首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.  相似文献   

2.
3.
4.
5.
Blood microRNA (miRNA) levels have been associated with and shown to participate in disease pathophysiology. However, the hematopoietic cell of origin of blood miRNAs and the individual blood cell miRNA profiles are poorly understood. We report the miRNA content of highly purified normal hematopoietic cells from the same individuals. Although T-cells, B-cells and granulocytes had the highest miRNA content per cell, erythrocytes contributed more cellular miRNA to the blood, followed by granulocytes and platelets. miRNA profiling revealed different patterns and different expression levels of miRNA specific for each lineage. miR-30c-5p was determined to be an appropriate reference normalizer for cross-cell qRT-PCR comparisons. miRNA profiling of 5 hematopoietic cell lines revealed differential expression of miR-125a-5p. We demonstrated endogenous levels of miR-125a-5p regulate reporter gene expression in Meg-01 and Jurkat cells by (1) constructs containing binding sites for miR-125a-5p or (2) over-expressing or inhibiting miR-125a-5p. This quantitative analysis of the miRNA profiles of peripheral blood cells identifies the circulating hematopoietic cellular miRNAs, supports the use of miRNA profiles for distinguishing different hematopoietic lineages and suggests that endogenously expressed miRNAs can be exploited to regulate transgene expression in a cell-specific manner.  相似文献   

6.
ABSTRACT

MiR-181a-5p’s mechanism in hypoxia–reoxygenation (H/R)-induced cardiomyocytes apoptosis has not been clarified. This study verified that SIRT1 was the target of miR-181a-5p. MiR-181a-5p expression was up-regulated or down-regulated in H/R-induced cardiomyocytes, and SIRT1 was transfected into cells alone or in combination with miR-181a-5p. Cell viability, apoptosis, levels of released lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the Bcl-2, Bax, and Caspase 3 levels in treated cells were tested. On the one hand, down-regulated miR-181a-5p promoted cell viability, reduced released LDH and MDA, and increased SOD level in H/R-induced cardiomyocytes. On the other hand, miR-181a-5p inhibited apoptosis and elevated Bcl-2 expression while decreasing the expressions of Bax and Caspase 3 in treated cells, but the effects of miR-181a-5p could be rescued by SIRT1. In conclusion, miR-181a-5p involved in H/R-induced cardiomyocytes apoptosis through regulating SIRT1, which might become a novel direction for related diseases.  相似文献   

7.
8.
BackgroundChemoprevention is the best cost-effective way regarding cancers. MicroRNAs (miRNAs) have been reported to be differentially expressed during the development of lung cancer. However, if lung cancer prevention can be achieved through modulating miRNAs expression so far remains unknown.PurposeTo discover ectopically expressed miRNAs in NNK-induced lung cancer and clarify whether Licochalcone A (lico A) can prevent NNK-induced lung cancer by modulating miRNA expression.Study design and methodsA/J mice were used to construct a lung cancer model by intraperitoneal injection with physiological saline NNK (100 mg/kg). Chemopreventive effects of lico A against lung cancer at 2 mg/kg and 20 mg/kg doses were evaluated in vivo. MicroRNA array and RT-qPCR were used to assess the expression levels of miRNAs. MLE-12 cells were treated with 0.1 mg/ml NNK, stimulating the ectopic expression pattern of miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p. miR-144-3p mimics and inhibitors were used to manipulate miR-144-3p levels. The effects of lico A (10 μM) on cell cycle distribution, apoptosis, and the expression of CK19, RASA1, miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p in NNK-treated MLE-12 cells were studied.ResultsThe expression levels of miR-144-3p, miR-20a-5p, and miR-29c-3p increased, while those of let-7d-3p and miR-328-3p decreased in both NNK-induced A/J mice and MLE-12 cells. Lico A could reverse the NNK-induced ectopic miRNA (miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) expression both in vivo and in vitro and elicit in vivo lung cancer chemopreventive effect against NNK. In MLE-12 cells, the overexpression of miR-144-3p elicited the same effect as NNK regarding the expression of lung cancer biomarker CK19; the silencing of miR-144-3p reversed the effect of NNK on cell cycle distribution and apoptosis. Lico A could reverse the effect of NNK on the expression of miR-144-3p, CK19, and RASA1 (predicted target of miR-144-3p).ConclusionThe present study suggests that miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p were involved in the in vivo pathogenesis of NNK-induced lung cancer, and lico A could reverse the effect of NNK both in vivo and in vitro to elicit lung cancer chemopreventive effects through, at least partially, these five ectopically expressed miRNAs, especially miR-144-3p.  相似文献   

9.
10.
11.
MicroRNA (miRNA) have been identified in circulating blood and might have the potential to be used as biomarkers for several pathophysiological conditions. To identify miRNA that are altered following stress events, turkeys (Meleagris gallopavo) were subjected to 2 h of road transportation. The expression levels of five circulating miRNA, namely miR-22, miR-155-5p, miR-181a-3p, miR-204 and miR-365-3p, were detected and assessed by quantitative polymerase chain reaction using TaqManR probes, as potential biomarkers of stress. The areas under the receiver operating characteristic curves were then used to evaluate the diagnostic performance of miRNA. A panel of three stress-responsive miRNA, miR-22, miR-155 and miR-365 were identified; their expression levels were significantly higher after road transportation and the area under the curve (AUC) were 0.763, 0.71 and 0.704, respectively. Combining the three miRNA a specificity similar to the one found for the three miRNA separately was found. The AUC of the weighted average of the three miRNA was 0.763. This preliminary study suggests that the expression levels of circulating miR-22, miR-155 and miR-365 are increased during transport-related stress and that they may have diagnostic value to discriminate between stressed- and unstressed animals.  相似文献   

12.
MicroRNAs (miRNAs) are small, short noncoding RNAs that modulate the expression of numerous genes by targeting their mRNA. Numerous abnormal miRNA expression patterns are observed in various human malignancies, and certain miRNAs can act as oncogenes or tumor suppressors. Astrocytoma, the most common neuroepithelial cancer, represents the majority of malignant brain tumors in humans. In our previous studies, we found that the downregulation of miR-181b-5p in astrocytomas is associated with a poor prognosis. The aim of the present study was to investigate the functional role of miR-181b-5p and its possible target genes. miR-181b-5p was significantly downregulated in astrocytoma specimens, and the reduced expression of miR-181b-5p was inversely correlated with the clinical stage. The ectopic expression of miR-181b-5p inhibited proliferation, migration and invasion and induced apoptosis in astrocytoma cancer cells in vitro. The NOVA1 (neuro-oncological ventral antigen 1) gene was further identified as a novel direct target of miR-181b-5p. Specifically, miR-181b-5p bound directly to the 3''-untranslated region (UTR) of NOVA1 and suppressed its expression. In clinical specimens, NOVA1 was overexpressed, and its protein levels were inversely correlated with miR-181b-5p expression. Furthermore, the changing level of NOVA1 was significantly associated with a poor survival outcome. Similar to restoring miR-181b-5p expression, downregulating NOVA1 inhibited cell growth, migration and invasion. Overexpression of NOVA1 reversed the inhibitory effects of miR-181b-5p. Our results indicate that miR-181b-5p is a tumor suppressor in astrocytoma that inhibits tumor progression by targeting NOVA1. These findings suggest that miR-181b-5p may serve as a novel therapeutic target for astrocytoma.  相似文献   

13.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   

14.
15.
为研究miR-125a-5p在猪圆环病毒2型(porcine circovirus type 2,PCV2)诱导淋巴细胞凋亡中的作用及其作用机制,以PCV2感染PK-15细胞外泌体孵育的淋巴细胞为研究对象,采用流式细胞术、蛋白质免疫印迹试验(Western blotting)和实时荧光定量PCR,检测淋巴细胞凋亡率及凋亡相关miRNA表达;合成miR-125a-5p模拟物和抑制物转染PK-15细胞,检测miR-125a-5p过表达或抑制表达后细胞凋亡率;采用生物信息学方法预测miR-125a-5p的靶基因,双荧光素酶报告基因检测miR-125a-5p对靶基因的调控;Western blotting检测外泌体孵育淋巴细胞的线粒体凋亡信号通路相关蛋白Bcl-2、Bax、细胞色素C和caspase-3的表达。结果显示,感染PCV2的PK-15细胞分泌的外泌体极显著提高淋巴细胞凋亡率,在一定浓度范围内呈剂量依赖性;与PCV2诱导细胞凋亡相关的miRNA中,miR-125a-5p表达量极显著升高,miR-125a-5p模拟物转染细胞后极显著提高细胞凋亡率;利用TargetScan预测发现,miR-125a-5p与Bcl-2 3''UTR区有结合位点,miR-125a-5p模拟物极显著抑制pmir-Bcl-2 3''UTR-WT荧光素酶活性,对pmir-Bcl-2 3''UTR-MuT的荧光素酶活性无明显改变;外泌体孵育的淋巴细胞Bcl-2表达量显著降低,Bax、细胞色素C的释放和caspase-3表达量显著升高,Bcl-2/Bax的比值极显著降低。这表明,PCV2通过外泌体诱导淋巴细胞上调miR-125a-5p的表达,进而抑制Bcl-2 mRNA和蛋白表达,激活淋巴细胞线粒体凋亡通路诱导细胞凋亡。  相似文献   

16.
17.
Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N?=?217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of >?1.50 or <?0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC?<?0.67) and 18 were significantly upregulated (FC?>?1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.  相似文献   

18.
19.
目的:探讨mi R-199a-3p负调控CBX7影响肺癌细胞NCI-H460的生物学行为。方法:qRT-PCR法检测并比较肺癌组织、癌旁正常组织、肺癌细胞、正常肺上皮细胞中的mi R-199a-3p m RNA相对表达量。比较远处转移肺癌组织、未转移肺癌组织中mi R-199a-3p m RNA相对表达量。qRT-PCR法、Western Blot法检测并比较肺癌组织、癌旁正常组织中的CBX7 m RNA及蛋白的表达水平。荧光素酶活性法检测mi R-199a-3p与靶基因CBX7的结合。比较mi R-199a-3p模拟物转染组与阴性对照组的肺癌细胞中的CBX7 m RNA相对表达量及CBX7蛋白表达水平。CCK8实验检测mi R-199a-3p对肺癌细胞增殖的促进作用。Tranwell实验检测mi R-199a-3p对肺癌细胞侵袭与迁移能力的影响。结果:肺癌组织中mi R-199a-3p明显高于癌旁正常组织,发生远处转移的肺癌组织中mi R-199a-3p m RNA的表达量明显高于未发生转移的肺癌组织,差异有统计学意义(P<0.001)。肺癌组织中CBX7m RNA、CBX7蛋白表达水平均明显低于癌旁正常组织,差异有统计学意义(P<0.001)。荧光素酶活性法证实mi R-199a-3p可与靶基因CBX7结合抑制CBX7的表达。肺癌细胞中mi R-199a-3p m RNA的相对表达量明显高于正常肺上皮细胞,CBX7 m RNA相对表达量明显低于正常肺上皮细胞(P<0.05)。对于肺癌细胞,mi R-199a-3p模拟物转染组的CBX7 m RNA相对表达量及CBX7蛋白表达水平均明显低于阴性对照组(P<0.001)。CCK8实验证实mi R-199a-3p能够促进肺癌细胞的增殖,Tranwell实验证实mi R-199a-3p对肺癌细胞侵袭与迁移具有积极的促进作用。结论:mi R-199a-3p在肺癌的发生发展过程中发挥重要作用,能够通过抑制CBX7基因的表达,促进肺癌细胞的增殖、侵袭和转移。  相似文献   

20.
Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号