首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Effective grain filling is one of the key determinants of grain setting in rice (Oryza sativa). Grain setting defect1 (GSD1), which encodes a putative remorin protein, was found to affect grain setting in rice. Investigation of the phenotype of a transfer DNA insertion mutant (gsd1-Dominant) with enhanced GSD1 expression revealed abnormalities including a reduced grain setting rate, accumulation of carbohydrates in leaves, and lower soluble sugar content in the phloem exudates. GSD1 was found to be specifically expressed in the plasma membrane and plasmodesmata (PD) of phloem companion cells. Experimental evidence suggests that the phenotype of the gsd1-Dominant mutant is caused by defects in the grain-filling process as a result of the impaired transport of carbohydrates from the photosynthetic site to the phloem. GSD1 functioned in affecting PD conductance by interacting with rice ACTIN1 in association with the PD callose binding protein1. Together, our results suggest that GSD1 may play a role in regulating photoassimilate translocation through the symplastic pathway to impact grain setting in rice.Grain filling, a key determinant of grain yield in rice (Oryza sativa), hinges on the successful translocation of photoassimilates from the leaves to the fertilized reproductive organs through the phloem transport system. Symplastic phloem loading, which is one of the main pathways responsible for the transport of photoassimilates in rice, is mediated by plasmodesmata (PD) that connect phloem companion cells with sieve elements and surrounding parenchyma cells (Kaneko et al., 1980; Chonan et al., 1981; Eom et al., 2012). PD are transverse cell wall channels structured with the cytoplasmic sleeve and the modified endoplasmic reticulum desmotubule between neighboring cells (Maule, 2008). A number of proteins affect the structure and functional performance of the PD, which in turn impacts the cell-to-cell transport of small and large molecules through the PD during plant growth, development, and defense (Cilia and Jackson, 2004; Sagi et al., 2005; Lucas et al., 2009; Simpson et al., 2009; Stonebloom et al., 2009). For example, actin and myosin, which link the desmotubule to the plasma membrane (PM) at the neck region of PD, are believed to play a role in regulating PD permeability by controlling PD aperture (White et al., 1994; Ding et al., 1996; Reichelt et al., 1999). Callose deposition can also impact the size of the PD aperture at the neck region (Radford et al., 1998; Levy et al., 2007) and callose synthase genes such as Glucan Synthase-Like7 (GSL7, also named CalS7), GSL8, and GSL12 have been shown to play a role in regulating symplastic trafficking (Guseman et al., 2010; Barratt et al., 2011; Vatén et al., 2011; Xie et al., 2011). Other proteins that have been shown to impact the structure and function of the PD include glycosylphosphatidylinositol (GPI)-anchored proteins, PD callose binding protein1 (PDCB1), which is also associated with callose deposition (Simpson et al., 2009), and LYSIN MOTIF DOMAIN-CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN2, which limits the molecular flux through the PD by chitin perception (Faulkner et al., 2013). Changes in PD permeability can have major consequences for the translocation of photoassimilates needed for grain filling in rice. However, the genes and molecular mechanisms underlying the symplastic transport of photoassimilates remain poorly characterized.Remorins are a diverse family of plant-specific proteins with conserved C-terminal sequences and highly variable N-terminal sequences. Remorins can be classified into six distinct phylogenetic groups (Raffaele et al., 2007). The functions of most remorins are unknown, but some members of the family have been shown to be involved in immune response through controlling the cell-to-cell spread of microbes. StREM1.3, a remorin that is located in PM rafts and the PD, was shown to impair the cell-to-cell movement of a plant virus X by binding to Triple Gene Block protein1 (Raffaele et al., 2009). Medicago truncatula symbiotic remorin1 (MtSYMREM1), a remorin located at the PM in Medicago truncatula, was shown to facilitate infection and the release of rhizobial bacteria into the host cytoplasm (Lefebvre et al., 2010). Overexpression of LjSYMREM1, the ortholog of MtSYMREM1 in Lotus japonicus, resulted in increased root nodulation (Lefebvre et al., 2010; Tóth et al., 2012). Although a potential association between remorins and PD permeability has been proposed (Raffaele et al., 2009), the diversity observed across remorins, plus the fact that remorin mutants generated through different approaches fail to show obvious phenotypes (Reymond et al., 1996; Bariola et al., 2004), have made it challenging to characterize the function of remorins in cell-to-cell transport.In this study, we identified a rice transfer DNA (T-DNA) insertion mutant (grain setting defect1-Dominant [gsd1-D]), with a grain setting-deficient phenotype caused by overexpression of GSD1, a remorin gene with unknown function. GSD1 is expressed specifically in phloem companion cells and is localized in the PD and PM. We provide evidence to show that overexpression of GSD1 leads to deficient grain setting in rice, likely as a consequence of reduced sugar transport resulting from decreased PD permeability in phloem companion cells.  相似文献   

3.
4.
5.
6.
In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.Aerenchyma formation is a morphological adaptation of plants to complete submergence and waterlogging of the soil, and facilitates internal gas diffusion (Armstrong, 1979; Jackson and Armstrong, 1999; Colmer, 2003; Voesenek et al., 2006; Bailey-Serres and Voesenek, 2008; Licausi and Perata, 2009; Sauter, 2013; Voesenek and Bailey-Serres, 2015). To adapt to waterlogging in soil, rice (Oryza sativa) develops lysigenous aerenchyma in shoots (Matsukura et al., 2000; Colmer and Pedersen, 2008; Steffens et al., 2011) and roots (Jackson et al., 1985b; Justin and Armstrong, 1991; Kawai et al., 1998), which is formed by programmed cell death and subsequent lysis of some cortical cells (Jackson and Armstrong, 1999; Evans, 2004; Yamauchi et al., 2013). In rice roots, lysigenous aerenchyma is constitutively formed under aerobic conditions (Jackson et al., 1985b), and its formation is further induced under oxygen-deficient conditions (Colmer et al., 2006; Shiono et al., 2011). The former and latter are designated constitutive and inducible lysigenous aerenchyma formation, respectively (Colmer and Voesenek, 2009). The gaseous plant hormone ethylene regulates adaptive growth responses of plants to submergence (Voesenek and Blom, 1989; Voesenek et al., 1993; Visser et al., 1996a,b; Lorbiecke and Sauter, 1999; Hattori et al., 2009; Steffens and Sauter, 2009; van Veen et al., 2013). Ethylene also induces lysigenous aerenchyma formation in roots of some gramineous plants (Drew et al., 2000; Shiono et al., 2008). The treatment of roots with ethylene or its precursor (1-aminocyclopropane-1-carboxylic acid [ACC]) stimulates aerenchyma formation in rice (Justin and Armstrong, 1991; Colmer et al., 2006; Yukiyoshi and Karahara, 2014), maize (Zea mays; Drew et al., 1981; Jackson et al., 1985a; Takahashi et al., 2015), and wheat (Triticum aestivum; Yamauchi et al., 2014a,b). Moreover, treatment of roots with inhibitors of ethylene action or ethylene biosynthesis effectively blocks aerenchyma formation under hypoxic conditions in maize (Drew et al., 1981; Konings, 1982; Jackson et al., 1985a; Rajhi et al., 2011).Ethylene biosynthesis is accomplished by two main successive enzymatic reactions: conversion of S-adenosyl-Met to ACC by 1-aminocyclopropane-1-carboxylic acid synthase (ACS), and conversion of ACC to ethylene by 1-aminocyclopropane-1-carboxylic acid oxidase (ACO; Yang and Hoffman, 1984). The activities of both enzymes are enhanced during aerenchyma formation under hypoxic conditions in maize root (He et al., 1996). Since the ACC content in roots of maize is increased by oxygen deficiency and is strongly correlated with ethylene production (Atwell et al., 1988), ACC biosynthesis is essential for ethylene production during aerenchyma formation in roots. In fact, exogenously supplied ACC induced ethylene production in roots of maize (Drew et al., 1979; Konings, 1982; Atwell et al., 1988) and wheat (Yamauchi et al., 2014b), even under aerobic conditions. Ethylene production in plants is inversely related to oxygen concentration (Yang and Hoffman, 1984). Under anoxic conditions, the oxidation of ACC to ethylene by ACO, which requires oxygen, is almost completely repressed (Yip et al., 1988; Tonutti and Ramina, 1991). Indeed, anoxic conditions stimulate neither ethylene production nor aerenchyma formation in maize adventitious roots (Drew et al., 1979). Therefore, it is unlikely that the root tissues forming inducible aerenchyma are anoxic, and that the ACO-mediated step is repressed. Moreover, aerenchyma is constitutively formed in rice roots even under aerobic conditions (Jackson et al., 1985b), and thus, after the onset of waterlogging, oxygen can be immediately supplied to the apical regions of roots through the constitutively formed aerenchyma.Very-long-chain fatty acids (VLCFAs; ≥20 carbons) are major constituents of sphingolipids, cuticular waxes, and suberin in plants (Franke and Schreiber, 2007; Kunst and Samuels, 2009). In addition to their structural functions, VLCFAs directly or indirectly participate in several physiological processes (Zheng et al., 2005; Reina-Pinto et al., 2009; Roudier et al., 2010; Ito et al., 2011; Nobusawa et al., 2013; Tsuda et al., 2013), including the regulation of ethylene biosynthesis (Qin et al., 2007). During fiber cell elongation in cotton ovules, ethylene biosynthesis is enhanced by treatment with saturated VLCFAs, especially 24-carbon fatty acids, and is suppressed by an inhibitor of VLCFA biosynthesis (Qin et al., 2007). The first rate-limiting step in VLCFA biosynthesis is condensation of acyl-CoA with malonyl-CoA by β-ketoacyl-CoA synthase (KCS; Joubès et al., 2008). KCS enzymes are thought to determine the substrate and tissue specificities of fatty acid elongation (Joubès et al., 2008). The Arabidopsis (Arabidopsis thaliana) genome has 21 KCS genes (Joubès et al., 2008). In the Arabidopsis cut1 mutant, which has a defect in the gene encoding CUT1 that is required for cuticular wax production (i.e. one of the KCS genes), the expression of AtACO genes and growth of root cells were reduced when compared with the wild type (Qin et al., 2007). Furthermore, expression of the AtACO genes was rescued by exogenously supplied saturated VLCFAs (Qin et al., 2007). These observations imply that VLCFAs or their derivatives work as regulatory factors for gene expression during some physiological processes in plants.reduced culm number1 (rcn1) was first identified as a rice mutant with a low tillering rate in a paddy field (Takamure and Kinoshita, 1985; Yasuno et al., 2007). The rcn1 (rcn1-2) mutant has a single nucleotide substitution in the gene encoding a member of the ATP-binding cassette (ABC) transporter subfamily G, RCN1/OsABCG5, causing an Ala-684Pro substitution (Yasuno et al., 2009). The mutation results in several mutant phenotypes, although the substrates of RCN1/OsABCG5 have not been determined (Ureshi et al., 2012; Funabiki et al., 2013; Matsuda et al., 2014). We previously found that the rcn1 mutant has abnormal root morphology, such as shorter root length and brownish appearance of roots, under stagnant (deoxygenated) conditions (which mimics oxygen-deficient conditions in waterlogged soils). We also found that the rcn1 mutant accumulates less of the major suberin monomers originating from VLCFAs in the outer part of adventitious roots, and this results in a reduction of a functional apoplastic barrier in the root hypodermis (Shiono et al., 2014a).The objective of this study was to elucidate the molecular basis of inducible aerenchyma formation. To this end, we examined lysigenous aerenchyma formation and ACC, ethylene, and VLCFA accumulation and their biosyntheses in rcn1 roots. Based on the results of these studies, we propose that VLCFAs are involved in inducible aerenchyma formation through the enhancement of ethylene biosynthesis in rice roots.  相似文献   

7.
8.
9.
The TaMATE1B gene (for multidrug and toxic compound extrusion) from wheat (Triticum aestivum) was isolated and shown to encode a citrate transporter that is located on the plasma membrane. TaMATE1B expression in roots was induced by iron deficiency but not by phosphorus deficiency or aluminum treatment. The coding region of TaMATE1B was identical in a genotype showing citrate efflux from root apices (cv Carazinho) to one that lacked citrate efflux (cv Egret). However, sequence upstream of the coding region differed between these two genotypes in two ways. The first difference was a single-nucleotide polymorphism located approximately 2 kb upstream from the start codon in cv Egret. The second difference was an 11.1-kb transposon-like element located 25 bp upstream of the start codon in cv Carazinho that was absent from cv Egret. The influence of these polymorphisms on TaMATE1B expression was investigated using fusions to green fluorescent protein expressed in transgenic lines of rice (Oryza sativa). Fluorescence measurements in roots of rice indicated that 1.5- and 2.3-kb regions upstream of TaMATE1B in cv Carazinho (which incorporated 3′ regions of the transposon-like element) generated 20-fold greater expression in the apical 1 mm of root compared with the native promoter in cv Egret. By contrast, fluorescence in more mature tissues was similar in both cultivars. The presence of the single-nucleotide polymorphism alone consistently generated 2-fold greater fluorescence than the cv Egret promoter. We conclude that the transposon-like element in cv Carazinho extends TaMATE1B expression to the root apex, where it confers citrate efflux and enhanced aluminum tolerance.Intraspecific variation in aluminum (Al3+) tolerance is evident in many crop species and has been shown to be under either simple or complex genetic control (Ma et al., 2004; Magalhaes et al., 2007; Krill et al., 2010; Famoso et al., 2011). In wheat (Triticum aestivum), Al3+ tolerance is primarily associated with efflux of organic anions from root tips, with at least two independent mechanisms being involved. The first and most widely distributed among genotypes is the Al3+-activated efflux of malate from root apices (Delhaize et al., 1993, Ryan et al., 1995). More recently, a second and less prevalent mechanism has been identified that relies on the constitutive efflux of citrate from root apices (Ryan et al., 2009).Organic anions protect roots by chelating and detoxifying Al3+ in the apoplast and rhizosphere around sensitive root apices (Delhaize et al., 1993, 2012; Ryan et al., 2001). For example, Al3+-tolerant genotypes of wheat release significantly more malate than sensitive genotypes (Ryan et al., 1995). The efflux of malate from root apices is mediated by the TaALMT1 (for Al3+-activated malate transporter) gene, which resides on chromosome 4DL (Raman et al., 2005, 2008; Zhou et al., 2007). TaALMT1 encodes an Al3+-activated anion channel permeable to malate located on the plasma membrane of root cells (Sasaki et al., 2004; Yamaguchi et al., 2005; Piñeros et al., 2008; Zhang et al., 2008). Similarly, ALMT1 genes contribute to Al3+ tolerance in Arabidopsis (Arabidopsis thaliana), oilseed rape (Brassica napus), and rye (Secale cereale; Ryan et al., 2011). While all members of the ALMT family characterized to date encode transport proteins, only a minority are involved in Al3+ tolerance. The others contribute to physiological processes related to ionic relations and osmotic adjustment (Kovermann et al., 2007; Gruber et al., 2010; Meyer et al., 2010, 2011; Sasaki et al., 2010).In many plant species, citrate efflux from root apices also confers Al3+ tolerance. The genes controlling citrate efflux were first identified in sorghum (Sorghum bicolor; SbMATE [for multidrug and toxic compound extrusion]; Magalhaes et al., 2007) and barley (Hordeum vulgare; HvAACT1; Furukawa et al., 2007), with additional genes subsequently identified in Arabidopsis (Liu et al., 2009), maize (Zea mays; Maron et al., 2010), rice (Yokosho et al., 2009), and rice bean (Vigna umbellate; Yang et al., 2011). These genes belong to a large and ubiquitous family of MATE genes that were first identified in prokaryotes (Hvorup et al., 2003). SbMATE and HvAACT1 are part of a subset of plant MATE genes that facilitate citrate efflux (Liu et al., 2009; Magalhaes, 2010) with roles in Al3+ tolerance and iron (Fe) nutrition. For example, FRD3 from Arabidopsis and OsFRDL1 from rice both encode MATE proteins located in vascular tissue, where they release citrate into the xylem to enable Fe transport to shoots (Durrett et al., 2007). Recent evidence suggests that the Al3+ tolerance gene in barley, HvAACT1, was coopted from an original function in Fe nutrition by a random mutation. Al3+-tolerant genotypes of barley have a 1-kb insertion in the 5′ untranslated region (UTR) of the HvAACT1 coding region that alters its expression pattern. The insertion extends HvAACT1 expression to the root apices, which, in the presence of Al3+, causes citrate efflux from the apices and enhanced Al3+ tolerance (Fujii et al., 2012).Evidence that citrate efflux confers Al3+ tolerance in some genotypes of wheat was provided by Ryan et al. (2009). The trait was mapped to the long arm of chromosome 4B and cosegregated with an EST showing 94% sequence identity to HvAACT1. This EST was expressed only in the root apices of wheat lines that showed citrate efflux (e.g. cv Carazinho; Ryan et al., 2009), suggesting that a MATE gene encodes citrate efflux from root apices. Here, we describe the isolation and characterization of a MATE gene from wheat named TaMATE1B that encodes a citrate transporter located on the plasma membrane. A large transposable element-like sequence was found to be inserted near the start of the TaMATE1B coding region specifically in genotypes that release citrate. We demonstrate that the fragment functions as a promoter that extends TaMATE1B expression to root apices and discuss how this mutation recruited a gene to confer a new phenotype associated with Al3+ tolerance.  相似文献   

10.
Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.Starch is an important plant-derived Glc polymer that is widely used as food and in manufacturing applications involving nonfood products. Starch is water insoluble and osmotically inactive. These properties make starch a suitable molecule for long-term carbohydrate storage in seeds and tubers. Higher plant cells contain terminally differentiated plastids called amyloplasts, which is the organelle involved in starch synthesis and storage in endosperm and tubers (Sakamoto et al., 2008). Starch is organized as transparent grains (starch grains [SGs]) in amyloplasts (Buléon et al., 1998; Hancock and Tarbet, 2000). SGs are easily visualized using iodine solution and can be clearly observed with a normal light microscope (Matsushima et al., 2010).Cereal endosperm accumulates high levels of starch, which fill most of the amyloplast intracellular space. Therefore, the amyloplast volume is considered as approximately equivalent to the SG volume (Matsushima et al., 2014). Rice (Oryza sativa) endosperm SGs are normally 10 to 20 μm in diameter (Matsushima et al., 2010). Each amyloplast contains a single SG that is organized from the assembly of several dozen smaller starch granules. Each starch granule is a sharp-edged polyhedron with a typical diameter of 3 to 8 μm. This type of SG is called a compound SG (Tateoka, 1962). For compound SGs, starch granules are assembled but not fused to form a single SG, which is easily separated by conventional purification procedures. By contrast, a simple SG contains a single starch granule (Tateoka, 1962). In this case, both terms are used equally. Simple SGs are produced in several important crops such as maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), and wheat (Triticum aestivum; Tateoka, 1962; Matsushima et al., 2010, 2013). SG sizes in cereal endosperm are diverse. Maize and sorghum SGs have a uniform size distribution of approximately 10 μm in diameter (Jane et al., 1994; Matsushima et al., 2010; Ai et al., 2011). In barley and wheat, SGs of two discrete size classes (approximately 15−25 μm and less than 10 μm) coexist in the same cells (Evers, 1973; French, 1984; Jane et al., 1994; Matsushima et al., 2010, 2013).The size of starch granules is one of the most important characteristics for industrial applications (Lindeboom et al., 2004). Small starch granules can replace fat in food applications, because aqueous dispersions of small starch granules show fat-mimetic properties (Malinski et al., 2003). The larger starch granules of maize and cassava (Manihot esculenta) improve the final starch yield after wet-milling purification (Gutiérrez et al., 2002). In the case of simple SGs, the size of SGs is equal to the size of starch granules. Therefore, manipulation of the sizes of SGs and starch granules is a molecular target for bioengineering programs. SG size can be reduced in transgenic plants and genetic mutants by down-regulating several starch synthetic enzymes (Gutiérrez et al., 2002; Bustos et al., 2004; Ji et al., 2004; Stahl et al., 2004; Matsushima et al., 2010; Fujita, 2014). By contrast, our understanding of the genetic tools, biosynthetic enzymes, and plant materials that can be utilized to enlarge SGs is limited.Recent work identified a rice mutant that develops enlarged SGs; this mutant has been named substandard starch grain4 (ssg4; Matsushima et al., 2014). The enlarged SGs are observed in starch-accumulating tissues of ssg4, including endosperm, pollen, root caps, and young pericarp. Chloroplasts in young ssg4 leaves also are enlarged. SSG4 encodes an amyloplast-localized large protein with a domain of unknown function (DUF490). SSG4 homologs are conserved from bacteria to higher plants; however, the exact molecular function of SSG4 is unknown.In this study, we report the identification of another rice mutant (ssg6) that develops enlarged SGs in endosperm. We characterize the ssg6 mutation and identify the responsible gene. SSG6 encodes a protein homologous to aminotransferase. SSG6 is localized at the amyloplast membrane and is a novel factor that influences SG size. We also determined that ssg4 and ssg6 mutations act synergistically in pollens. SSG6 will be a useful molecular target for future starch breeding and starch biotechnology programs.  相似文献   

11.
12.
13.
14.
15.
Agrobacterium tumefaciens delivers its single-stranded transferred DNA (T-strand) into the host cell nucleus, where it can be converted into double-stranded molecules. Various studies have revealed that double-stranded transfer DNA (T-DNA) intermediates can serve as substrates by as yet uncharacterized integration machinery. Nevertheless, the possibility that T-strands are themselves substrates for integration cannot be ruled out. We attempted to block the conversion of T-strands into double-stranded intermediates prior to integration in order to further investigate the route taken by T-DNA molecules on their way to integration. Transgenic tobacco (Nicotiana benthamiana) plants that overexpress three yeast (Saccharomyces cerevisiae) protein subunits of DNA REPLICATION FACTOR A (RFA) were produced. In yeast, these subunits (RFA1–RFA3) function as a complex that can bind single-stranded DNA molecules, promoting the repair of genomic double strand breaks. Overexpression of the RFA complex in tobacco resulted in decreased T-DNA expression, as determined by infection with A. tumefaciens cells carrying the β-glucuronidase intron reporter gene. Gene expression was not blocked when the reporter gene was delivered by microbombardment. Enhanced green fluorescent protein-assisted localization studies indicated that the three-protein complex was predominantly nuclear, thus indicating its function within the plant cell nucleus, possibly by binding naked T-strands and blocking their conversion into double-stranded intermediates. This notion was further supported by the inhibitory effect of RFA expression on the cell-to-cell movement of Bean dwarf mosaic virus, a single-stranded DNA virus. The observation that RFA complex plants dramatically inhibited the transient expression level of T-DNA and only reduced T-DNA integration by 50% suggests that double-stranded T-DNA intermediates, as well as single-stranded T-DNA, play significant roles in the integration process.Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of transkingdom DNA transfer (Stachel and Zambryski, 1989; Tzfira and Citovsky, 2002; Lacroix and Citovsky, 2013). This bacterium creates crown galls by transforming plant cells with a part of its Ti plasmid, the transfer DNA (T-DNA), at the infection site. The T-DNA, which integrates into the plant genome, contains genes encoding for enzymes involved in the production, modification, and alteration of plant growth regulators‎ and in the production of tumor-specific metabolites called opines. Expression of the integrated T-DNA, therefore, results in uncontrolled cell division and the formation of tumors (Gaudin et al., 1994; Das, 1998).The route that takes the T-DNA from the bacterium to the plant cell nucleus occurs in three major steps. It begins inside A. tumefaciens, where the virulence proteins VirD1 and VirD2 are responsible for processing the single-stranded T-DNA. The T-strand with one VirD2 molecule covalently attached to its 5′ end (Herrera-Estrella et al., 1988; Young and Nester, 1988) is then exported, together with several other virulence proteins, through the bacterial type IV secretion system, where it is most likely coated with many VirE2 molecules, becoming the transported form of the T-DNA, the transport complex (Dumas et al., 2001). VirE2 is probably translocated to the plant cell independently of the VirD2-conjugated T-strand along with other A. tumefaciens effector proteins (Otten et al., 1984; Sundberg et al., 1996). Moreover, VirE2 binds to the T-strand in the plant and thus provides protection from nuclease attack inside the plant cells (Yusibov et al., 1994). Abu-Arish et al. (2004) and Citovsky et al. (1997) used the bacteriophage M13 single-stranded DNA (ssDNA) mixed with purified VirE2 molecules to gain direct insight into the transport complex structure. Electron microscopy and single-particle image-processing methods yielded a better understanding of the transport complex structure. During the last step on the way to the nucleus, VirD2 and VirE2 are thought to assist the import of the transport complex into the host cell nucleus (Howard et al., 1992; Rossi et al., 1993; Citovsky, 1994; Ziemienowicz, 2001), whereas phosphorylated VirE2 INTERACTED PROTEIN1 (VIP1; Djamei et al., 2007; Dafny-Yelin et al., 2008) functions as a molecular linker between VirE2 and KARYOPHERIN-α (KAPα; Tzfira and Citovsky, 2002), allowing VirE2 to use the host cell nuclear import machinery (Tzfira et al., 2001; Citovsky et al., 2004; Anand et al., 2007).Once inside the nucleus, the transport complex is the substrate destined for integration. Two different models have been suggested for the T-DNA integration, double-stranded break (DSB) repair and single-stranded gap repair (SSGR; Gheysen et al., 1991; Mayerhofer et al., 1991). The DSB model predicts that unwound ends of a double-stranded T-DNA molecule anneal with single-stranded overhangs of DSBs in the plant DNA, the residual 5′ and 3′ overhangs are removed, and the inserted T-DNA is ligated. Mutations in the Arabidopsis (Arabidopsis thaliana) RADIATION-SENSITIVE52 (RAD52) gene that plays an essential role in homology-dependent DSB repair and recombination (Symington, 2002) decrease the levels of intrachromosomal recombination compared with wild-type plants (Samach et al., 2011). Recent studies further supported the notion that the T-strand molecule becomes double stranded prior to integration. For example, a direct indication of the involvement of double-stranded integration intermediates came from the detection of T-DNA inserts within the sites of DSB repair in the host DNA, which suggested ligation of double-stranded T-DNA molecules to both sides of the break made using a rear-cutting restriction enzyme (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Recent evidence shows that T-DNA molecules can be converted into double-stranded T-DNA molecules using T-strand priming (Liang and Tzfira, 2013), and while double-stranded T-DNA molecules may serve as substrates for integration (Chilton and Que, 2003; Tzfira et al., 2003), a recent study showed that double-stranded T-DNA molecules can circularize and may end up as a dead ends for the integration process (Singer ‎et al., 2012). The SSGR model was established as the dominant model for T-DNA integration in plant cells based on two major observations. First, VirD2 is able not only to digest but also to rejoin single-stranded substrates in vitro (Pansegrau et al., 1993). This led to the suggestion that VirD2 may function as the T-DNA ligase in plant cells and, by implication, that T-DNAs integrate as single-stranded molecules. Second, specific mutations at the VirD2 putative integrase motif resulted in small deletions at the 5′ end of the T-DNA molecules (Tinland et al., 1995). Therefore, Tinland et al. (1995) revisited the SSGR integration model to the microhomology-dependent integration model, suggesting that only short sequences of the T-DNA molecule actually anneal to preintegration genomic sites (Tzfira et al., 2004a; Windels et al., 2008; Ziemienowicz et al., 2008).The DSB model suggests that the transport complex is first stripped of its attached protein in the nucleus and then arrives at the integration site as double-stranded DNA (dsDNA). However, in the SSGR model, the transport complex itself reaches the site of integration and then probably degrades during the integration process. Evidence for a physical connection between the transport complex and the chromatin was presented by Loyter et al. (2005), who found that VIP1 acts as a molecular linker between the transport complex and the histone constituents of the host chromatin. When the transport complex reaches the chromatin, VIP1 becomes polyubiquitinated by VirF or Skp1/Cullin/F-box protein VIP1-binding F-box [SCF(VBF); Zaltsman et al., 2010, 2013] containing a proteolysis complex, and after the protein complex is degraded, the single-stranded T-DNA remains naked, with only VirD2 attached to its right border (Magori and Citovsky, 2011).We overexpressed the ssDNA-binding protein REPLICATION FACTOR A (RFA) from yeast (Saccharomyces cerevisiae) in order to further characterize the route that takes the transport complex to the integration site through double- or single-stranded forms. Previous work shows that overexpression of an ssDNA-binding protein from Escherichia coli (i.e. the recombination protein A) can function in plant cells and can interact with or supplement the endogenous plant recombination machinery (Reiss et al., 1996).RFA from yeast is a tightly associated complex composed of three subunits of 69, 36, and 13 kD, termed RFA1, RFA2, and RFA3, respectively (Longhese et al., 1994). Hays et al. (1998) suggested a role for RFA in recruiting DNA polymerase to the site of a DSB via simultaneous interactions with RAD52 and a repair polymerase, in order to protect the exposed single-stranded ends from cellular nucleases (Smith and Rothstein, 1995; Park et al., 1996; Hays et al., 1998). RFA heterologous proteins have been found in plants, but their function in T-DNA integration and their involvement in the DNA-repair mechanism are still unknown. In this study, we investigated the effect of the RFA complex from yeast on the T-DNA integration mechanism in the plant cell nucleus and report that overexpression of the RFA complex (Rex) in tobacco (Nicotiana benthamiana) plants almost completely blocks the T-DNA’s transient and reduced stable transformation, probably by binding to single-stranded T-DNA, and prevents its expression and integration through the DSB pathway. Moreover, we show that the movement of Bean dwarf mosaic virus (BDMV; Begomovirus: Geminiviridae), a single-stranded virus, is inhibited in the Rex-transformed plant.  相似文献   

16.
17.
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.To counter the effects of endogenous and exogenous factors that threaten the genome integrity, efficient mechanisms have evolved to ensure the faithful transmission of genetic information (Tuteja et al., 2001). Double-strand breaks, induced by conditions such as ionizing radiation or replication fork (RF) stalling, are among the most deleterious lesions (Jackson and Bartek, 2009). To protect the genome from consequences of these lesions, the cells have ancient double-strand break repair mechanisms, including the homologous recombination (HR) pathway. The HR mechanism is also of great importance in the intentional genetic recombination during sexual reproduction. A key intermediate in HR is the so-called Holliday junction (HJ), a structure that was first suggested in the context of a gene conversion model in fungi (Holliday, 1964) and later shown to arise in somatic and meiotic cells (Szostak et al., 1983; Schwacha and Kleckner, 1995; Cromie et al., 2006; Bzymek et al., 2010).HJs are structures consisting of four DNA strands of two homologous DNA helices (e.g. homologous chromosomes or sister chromatids). They arise through invasion of one single strand from each of two helices into the other double strand. This results in two continuous strands (one per helix) and two strands that cross from one helix into the other. Schematics often depict the HJs with a parallel orientation of the helices, in which the crossing strands cross each other as was originally postulated (Holliday, 1964). However, HJs based on oligonucleotides have been shown to adopt an antiparallel conformation (for review, see Lilley, 2000). In this configuration, the junction resembles the letter H in a lateral view, and the crossing strands actually perform U turns. The crossing strands represent physical links between the two DNA strands involved. If a RF is restored by HR-mediated repair during mitosis, the resulting HJ usually involves the two sister chromatids of one chromosome (Li and Heyer, 2008). In meiosis, the physical links in the shape of HJs arise because of meiotic crossover between homologous chromosomes. In either case, these links must be resolved to ensure unperturbed cell survival.The importance of resolving the HJs for the survival of cells and organisms is highlighted by the phenotypes described for mutants defective for the known pathways of HJ resolution. One of these pathways is the resolution by canonical HJ resolvases, enzymes that cleave the two opposing strands of a HJ in perfectly symmetric positions relative to the junction point, which results in readily ligatable nicked duplex (nD) products (Svendsen and Harper, 2010). This property distinguishes the canonical HJ resolvases from the noncanonical resolvases (see below).The main resolvase of Escherichia coli is radiation and UV sensitive C (RuvC), which is part of the E. coli resolvasome (RuvABC complex; Otsuji et al., 1974; Sharples et al., 1990, 1999). In this complex, a HJ is sandwiched between two RuvA tetramers (Panyutin and Hsieh, 1994). Two RuvB complexes form ATP-dependent motors of branch migration, with two opposing helical arms of the junction threaded through their central openings. For the resolution of the HJ, one RuvA tetramer is replaced by a RuvC homodimer. This homodimer positions two active sites at the center of the junction that are poised to cleave the junction point if a preferred consensus sequence of the form 5′-(A/T)TT(G/C)-3′ is encountered. The requirement for this correct sequence is quite strict; even a single base change can lead to a drastic reduction of the cleavage efficiency (Shah et al., 1994). Isolated EcRuvC is also active in vitro and binds only HJ structures with high specificity. This binding is independent of the sequence context, but the cleavage depends on the specific sequence (Iwasaki et al., 1991; Benson and West, 1994; Dunderdale et al., 1994). The exact cleavage position has been determined to be either one nucleotide 3′ or 5′ from the junction or at the junction point (Bennett and West, 1996; Shida et al., 1996; Osman et al., 2009). The well-characterized EcRuvC is often referred to as a paradigm of canonical HJ resolution.Eukaryotes have evolved a more complex interplay of different HJ resolution pathways (Schwartz and Heyer, 2011; Zakharyevich et al., 2012). A defined complex, consisting of a recombination deficiency Q (RecQ) helicase (AtRECQ4A in Arabidopsis [Arabidopsis thaliana], Bloom syndrome protein in human, and Slow growth suppression1 (Sgs1) in yeast [Saccharomyces cerevisiae]), a type IA topoisomerase (DNA topoisomerase 3-alpha [TOP3A] in Arabidopsis, HsTOPOIIIα in human, and ScTop3 in yeast), and the structural protein RecQ-mediated genome instability1 (AtRMI1 in Arabidopsis, HsRMI1 in human, and ScRmi1 in yeast; RTR complex), mediates the so-called dissolution pathway. The crossing points of a double HJ are brought together by branch migration catalyzed by the helicase followed by decatenation catalyzed by the topoisomerase (Wu and Hickson, 2003; Hartung et al., 2007a, 2008; Mankouri and Hickson, 2007; Yang et al., 2010). In addition to the catalytic activities, a functional RTR complex also requires structural functions based on protein-protein interactions, for which RMI1 plays an essential role (Mullen et al., 2005; Chen and Brill, 2007; Bonnet et al., 2013; Schröpfer et al., 2014). Dissolution leads to noncross-over products and therefore, is a major mechanism in somatic yeast cells (Gangloff et al., 1994; Ira et al., 2003; Matos et al., 2011). In Arabidopsis, the loss of RTR component function leads to elevated rates of HR as well as sensitivity to UV light and methylmethane sulfonate (MMS; Bagherieh-Najjar et al., 2005; Hartung et al., 2007a; Bonnet et al., 2013). Mutants of AtRMI1 and AtTOP3A exhibit severe and unique meiotic phenotypes (Chelysheva et al., 2008; Hartung et al., 2008). This meiosis I arrest is dependent on HR, but the exact nature of the recombination intermediates that are involved remains unclear (Li et al., 2004; Hartung et al., 2007b; Knoll et al., 2014).Dissolution acts in parallel with a second pathway mediated by the structure-specific endonuclease MMS and UV-sensitive protein81 (MUS81) as shown by the fact that the additional mutation of ScSgs1/AtRECQ4A leads to synthetic lethality (Mullen et al., 2001; Hartung et al., 2006; Mannuss et al., 2010). Single mutants of MUS81 in yeast, human, Drosophila melanogaster, and Arabidopsis are sensitive to DNA-damaging agents that perturb RFs and show reduced HR after induction of double-strand breaks (Boddy et al., 2001; Hanada et al., 2006; Hartung et al., 2006). The MUS81 homologs form heterodimers with the noncatalytic subunit essential meiotic endonuclease1 (EME1; ScMms4 in S. cerevisiae). SpMus81-Eme1 was, to our knowledge, the first nuclear endonuclease reported to be capable of resolving HJs (Boddy et al., 2001). The Arabidopsis complexes can be formed with the two different subunits: AtEME1A or AtEME1B (Geuting et al., 2009). AtMUS81-EME1A/B, like the fission yeast ortholog, preferentially cleaves nicked Holliday junctions (nHJs) and 3′-flaps but also shows weaker activity on intact HJs in vitro (Boddy et al., 2001; Osman et al., 2003; Geuting et al., 2009; Schwartz and Heyer, 2011). MUS81 homologs are key players in meiotic cross-over generation (Osman et al., 2003; Berchowitz et al., 2007; Higgins et al., 2008). Although cross-over formation is solely dependent on SpMus81 in fission yeast, this function was shown to be shared with ScYen1 in budding yeast (Osman et al., 2003; Blanco et al., 2010; Ho et al., 2010; Tay and Wu, 2010). Tightly regulated by cell division cycle5-dependent hyperphosphorylation at the end of prophase I, the main activity of ScMus81-Mms4 is timed to coordinate with the formation of chiasmata and HJs that link the homologous chromosomes. This role in meiosis I is shown by the failure of chromosome segregation at the end of meiosis I in ScMus81 mutants (Matos et al., 2011). Interestingly, the chromosomes could be segregated at the end of meiosis II because of the presence of ScYen1. In contrast to canonical HJ resolvases, the hallmark of the MUS81-EME1 cleavage mechanism is the asymmetry of the second incision relative to either a first incision or a preexisting nick. This difference classifies MUS81-EME1 as a noncanonical resolvase. Its products need additional processing by gap-filling or flap-cleaving enzymes to allow religation (Boddy et al., 2001; Geuting et al., 2009).In very recent studies, HsMUS81-EME1 was found to constitute an essential canonical HJ resolvase with HsSLX1-SLX4 (SLX for synthetic lethal of unknown function), in which a first incision is made by HsSLX1-SLX4 followed by the enhanced action of the HsMUS81-EME1 subunits on the resulting nHJ (Garner et al., 2013; Wyatt et al., 2013). HsSLX1-SLX4 had previously been described as a canonical resolvase, albeit producing only a low level of symmetrically cut ligatable products (Fekairi et al., 2009).In addition to the mechanisms described above, an activity resembling that of EcRuvC had long been known to be present in mammalian cell-free extracts. In 2008, the group of Steven C. West succeeded in identifying, to their knowledge, the first nuclear proteins analogous to the EcRuvC paradigm: ScYen1 and Homo sapiens XPG-like endonuclease1 (HsGEN1; Ip et al., 2008). These proteins are members of the large and well-characterized Rad2/XPG family of nucleases. The Rad2/XPG family consists of the Xeroderma pigmentosum group G-complementing protein (XPG) endonucleases of the nucleotide excision repair (class I), the flap endonuclease1 (FEN1) replication-associated flap endonucleases (class II), the exodeoxyribonuclease1 (EXO1) exonucleases of recombination and repair (class III), and class IV (containing the [putative] eukaryotic HJ resolvases). This last class was introduced after the identification of the rice (Oryza sativa) single-strand DNA endonuclease1 (OsSEND-1) based on sequence homology. The class IV members show a domain composition homologous to FEN1 and EXO1, with no spacer region between their N-terminal XPG (XPG-N) and internal XPG (XPG-I) domains, whereas the primary structure of these domains is more similar to the sequence of the nuclease domain of XPG (Furukawa et al., 2003).Although all Rad2/XPG homologs share a common cleavage mechanism as observed for the typical 5′-flap substrate (Tsutakawa et al., 2011; Tsutakawa and Tainer, 2012), the striking evolutionary difference between classes I, II, and III on the one hand and the HJ resolvases (class IV) on the other hand is the ability of class IV members to form homodimers in vitro at their preferred substrate, the HJs (Rass et al., 2010). The homodimer configuration ensures the presence of two active sites positioned on the opposing strands of the HJ, which is necessary for resolution. The mode of eukaryotic HJ resolution is largely similar to the bacterial paradigm: (1) cleavage occurs one nucleotide in the 3′ direction of a static junction point (equivalent to the main cleavage site on 5′-flaps), (2) the incisions occur with almost perfect point symmetry, (3) the incisions result in readily ligatable nDs, and (4) certain sites within a migratable HJ core are preferred, providing evidence for a (yet to be determined) sequence specificity (Ip et al., 2008; Bailly et al., 2010; Rass et al., 2010; Yang et al., 2012).In the absence of MUS81-EME1/Mms4, the proteins HsGEN1, ScYen1, and CeGEN-1 have been shown to play a role in response to replication-associated perturbations, such as MMS- and UV-induced DNA damage (Bailly et al., 2010; Blanco et al., 2010; Tay and Wu, 2010; Gao et al., 2012; Muñoz-Galván et al., 2012). It is also likely that these proteins provide a backup mechanism in mitosis and meiosis, ensuring proper chromosome segregation after a failure of other mechanisms, including MUS81-EME1/Mms4 (Blanco et al., 2010; Matos et al., 2011).Although canonical HJ resolvases in animals and fungi are a current topic of great interest, very little is known about these proteins in plants. In rice, two members of the Rad2/XPG class IV have been described: OsSEND-1 (the founding member) and OsGEN-like (OsGEN-L). OsSEND-1 was shown to digest single-stranded circular DNA, and its expression is induced on MMS-induced genotoxic stress, whereas OsGEN-L is implicated in late spore development (Furukawa et al., 2003; Moritoh et al., 2005). Both studies (Furukawa et al., 2003; Moritoh et al., 2005) proposed putative homologs in other plants, and the gene locus At1g01880 of Arabidopsis, coding for the protein AtGEN1, is considered the ortholog of HsGEN1 and ScYen1 (Ip et al., 2008). However, currently, only OsGEN-L has been further investigated and described to possess in vitro properties similar to both Rad2/XPG nucleases and EcRuvC. This protein shows a well-defined 5′-flap activity as well as a poorly characterized ability, similar to that of EcRuvC, to resolve mobile HJs (Yang et al., 2012).Thus, of two members of Rad2/XPG class IV of plants, only one member has so far been analyzed with respect to a possible HJ resolvase activity. However, Arabidopsis expression data show that both proteins are expressed in plants and do not reveal marked differences (Laubinger et al., 2008). In this study, the goal was, therefore, to characterize the in vitro activities of not only AtGEN1 but also, AtSEND1, focusing on the idea that Arabidopsis and (seed) plants in general might encode not one but actually two HJ resolvases with functional homology to EcRuvC.  相似文献   

18.
19.
20.
Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis.Aluminum (Al) toxicity is a major factor that limits plant growth in acid soils and affects approximately 30% of the total ice-free land area of the world (von Uexküll and Mutert, 1995). Although Al in soils exist in nonphytotoxic silicate or oxide forms at neutral pH, it is solubilized into a phytotoxic form, mainly as Al3+, at a pH of less than 5 (Kinraide, 1991; Kochian, 1995). The accumulation of Al in root tips causes rapid inhibition of root elongation, which is a characteristic symptom of Al toxicity in plants (Delhaize and Ryan, 1995; Ma, 2007). In general, plants exhibit an inhibition of root elongation as early as 30 to 120 min after exposure to excessive Al (Barceló and Poschenrieder, 2002). Inhibition of root elongation leads to decreased water and nutrient uptake and, eventually, to restriction of growth of the whole plant.Plants have evolved different levels of Al resistance mediated by two distinct classes of mechanisms (Kochian et al., 2004; Ma, 2007). One strategy is the exclusion of Al from the root tips (exclusion mechanism), and the other is tolerance to Al that enters the root tips (internal tolerance mechanism). The secretion of organic acid anions from roots in response to exposure to Al is the best-documented mechanism for Al exclusion. Organic acid anions (i.e. malate, citrate, and oxalate) can form a complex with Al in the rhizosphere and thereby prevent Al from entering the root tips. The genes encoding transporters for the Al-induced secretion of malate and citrate have been identified and characterized in several plant species (Ryan et al., 2011; Delhaize et al., 2012). Organic acid anions also play a role in the detoxification of Al that enters the roots by means of internal formation of complexes with Al (Ma et al., 1998). However, findings in recent studies increasingly suggest that the Al resistance of some plant species and cultivars cannot be explained solely by these two functions of organic acid anions (Wenzl et al., 2001, 2002; Piñeros et al., 2005; Zheng et al., 2005; Famoso et al., 2010). In addition to organic acid anions, flavonoid-type phenolics (Kidd et al., 2001), phenolic compounds (Ofei-Manu et al., 2001), cyclic hydroxamates (Poschenrieder et al., 2005), and proanthocyanidins (Osawa et al., 2011) in roots or root exudates are proposed as potential organic ligands for Al. The mechanisms by which these additional ligands confer Al resistance remain poorly understood.Eucalyptus camaldulensis is an evergreen tree belonging to the Myrtaceae family and is cultivated in tropical and subtropical regions of the world on account of its superior growth, broad adaptability, and multipurpose wood properties. E. camaldulensis can grow in acid soils and even in acid sulfate soils, where the pH is often lower than 3.5 and the Al concentration in the soil solution often reaches the millimolar level (van Breemen and Pons, 1978). Indeed, seedlings of this species show no inhibition of root elongation and plant growth when exposed to 1 mm Al for 20 d under hydroponic conditions (Tahara et al., 2005). Such Al resistance is considerably higher than that reported for a variety of herbaceous crops and model plants in studies of Al resistance mechanisms; such plants exhibit an inhibition of root elongation at 1 to 50 μm Al (Wenzl et al., 2001). Although our understanding of Al resistance mechanisms in some crops and model plants has improved recently, that for extremely Al-resistant species such as E. camaldulensis is limited.In E. camaldulensis, citrate secretion from roots and its content in the root tips are increased by exposure to Al, suggesting that citrate may contribute to its Al resistance (Tahara et al., 2008a). However, the amounts of organic acid anions, including citrate, secreted from roots and contained within the root tips are lower than those of more sensitive species (Tahara et al., 2008a). Therefore, the high Al resistance of E. camaldulensis cannot be explained only by the presence of organic acid anions. Roots of E. camaldulensis can accumulate large amounts of Al (11 mg g−1 dry weight) with no symptoms of Al toxicity (Tahara et al., 2005), suggesting the existence of additional mechanisms for internal tolerance. In this study, we investigated the presence of novel Al-binding ligands other than organic acid anions in E. camaldulensis roots and identified a hydrolyzable tannin, oenothein B, as a novel type of Al-binding ligand. We also examined the role of the ligand in the internal Al tolerance of E. camaldulensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号