首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lac repressor, lambda cro protein and their operator complexes are structurally, biochemically and genetically well analysed. Both proteins contain a helix-turn-helix (HTH) motif which they use to bind specifically to their operators. The DNA sequences 5'-GTGA-3' and 5'-TCAC-3' recognized in palindromic lac operator are the same as in lambda operator but their order is inverted form head to head to tail to tail. Different modes of aggregation of the monomers of the two proteins determine the different arrangements of the HTH motifs. Here we show that the HTH motif of lambda cro protein can replace the HTH motif of Lac repressor without changing its specificity. Such hybrid Lac repressor is unstable. It binds in vitro more weakly than Lac repressor but with the same specificity to ideal lac operator. It does not bind to consensus lambda operator.  相似文献   

3.
The hinge-region of the lac repressor plays an important role in the models for induction and DNA looping in the lac operon. When lac repressor is bound to a tight-binding symmetric operator, this region forms an alpha-helix that induces bending of the operator. The presence of the hinge-helices is questioned by previous data that suggest that the repressor does not bend the wild-type operator. We show that in the wild-type complex the hinge-helices are formed and the DNA is bent, similar to the symmetric complex. Furthermore, our data show differences in the binding of the DNA binding domains to the half-sites of the wild-type operator and reveal the role of the central base-pair of the wild-type operator in the repressor-operator interaction. The differences in binding to the operator half-sites are incorporated into a model that explains the relative affinities of the repressor for various lac operator sequences that contain left and right half-sites with different spacer lengths.  相似文献   

4.
DNA supercoiling promotes formation of a bent repression loop in lac DNA   总被引:60,自引:0,他引:60  
Titration experiments on supercoiled lac DNA show that one repressor tetramer can bind simultaneously to the primary lac operator and to the very weak lac pseudo-operator, located 93 base-pairs apart. The formation of this complex is accompanied by the appearance of an extreme hypersensitive site in a five base-pair sequence located approximately midway between the operators. This remote sequence is hypersensitive to attack by two different chemical probes, dimethyl sulfate and potassium permanganate, the latter of which is a new probe for distorted DNA. We interpret these results in terms of a complex in which lac repressor holds two remote operators together in a DNA loop. The formation of this bent DNA loop requires negative DNA supercoiling. In vivo, both lac operators bind repressor even though the presence of multiple operator copies has forced the two operators to compete for a limited amount of repressor. This suggests that the operator and pseudo-operator have similar affinities for repressor in vivo. Such similar affinities were observed in vitro only when DNA supercoiling forced formation of a repression loop.  相似文献   

5.
We have shown previously that lac repressor binds specifically and quantitatively to lac operator restriction fragments which have been complexed with histones to form artificial nucleosomes (203 base pair restriction fragment) or core particles (144 base pair restriction fragment. We describe here a quantitative method for determining the equilibrium binding affinities of repressor for these lac reconstitutes. Quantitative analysis shows that the operator-histone reconstitutes may be grouped into two affinity classes: those with an affinity for repressor close to that of naked DNA and those with an affinity 2 or more orders of magnitude less than that of naked DNA. All particles in the lac nucleosome preparations bind repressor with high affinity, but the lac core particle preparations contain particles of both high and low affinities for repressor. Formaldehyde cross-linking causes all high-affinity species to suffer a 100-fold decrease in binding affinity. In contrast, there is no effect of cross-linking on species of low affinity. Therefore, the ability of a particle to be bound tightly by repressor depends on a property of the particle which is eliminated by cross-linking. Control experiments have shown that chemical damage to the operator does not accompany cross-linking. Therefore, the property sensitive to cross-linking must be the ability of the particle to change conformation. We infer that the particles of low native affinity, like cross-linked particles, are of low affinity because of an inability to facilitate repressor binding by means of this conformational change. Dimethyl suberimidate cross-linking experiments show that histone-histone cross-linking is sufficient to preclude high-affinity binding. Thus, the necessary conformational change involves a nucleosome histone core event. We find that the ability of a particle to undergo a repressor-induced facilitating conformational change appears to depend on the position of the operator along the DNA binding path of the nucleosome core. We present a general model which proposes that nucleosomes are divided into domains which function differentially to initiate conformational changes in response to physiological stimuli.  相似文献   

6.
We have studied the binding of the CAP protein to an 18 base pair lac promoter sequence comprising the core of the CAP recognition sequence. Specific binding of this sequence was established by competition binding assays and comparison of the relative affinities of a number of lac promoter, lac operator, and unspecific sequences of different lengths. The effect of the binding of CAP to the 18 base pair promoter sequence and, for comparison, to an 18 base pair symmetric operator and an oligonucleotide of unrelated sequence have been studied by 1H NMR. Binding of CAP does not bring about any changes in the chemical shift values of the imino proton resonances of the DNA, but causes the selective line broadening of two of the resonances. The comparison of these data with results of gel retardation assays published previously (1) allows the identification and localization of a kink induced in the DNA by the CAP binding to its specific site on the lac promoter.  相似文献   

7.
J L Betz  M Z Fall 《Gene》1988,67(2):147-158
The specific binding of dominant-negative (I-d) lactose (lac) repressors to wild-type (wt) as well as mutant (Oc) lac operators has been examined to explore the sequence-specific interaction of the lac repressor with its target. Mutant lacI genes encoding substitutions in the N-terminal 60 amino acids (aa) were cloned in a derivative of plasmid pBR322. Twelve of these lacI-d missense mutations were transferred from F'lac episomes using general genetic recombination and molecular cloning, and nine lacI missense mutations were recloned from M13-lacI phages [Mott et al., Nucl. Acids Res. 12 (1984) 4139-4152]. The mutant repressors were examined for polypeptide size and stability, for binding the inducer isopropyl-beta-D-thiogalactoside (IPTG), as well as binding to wt operator. The mutant repressors' affinities for wt operator ranged from undetectable to about 1% that of wt repressor, and the mutant repressors varied in transdominance against repressor expressed from a chromosomal lacIq gene. Six of the I-d repressors were partially degraded in vivo. All repressors bound IPTG with approximately the affinity of wt repressor. Repressors having significant affinity for wt operator or with substitutions in the presumed operator recognition helix (aa 17-25) were examined in vivo for their affinities for a series of single site Oc operators. Whereas the Gly-18-, Ser-18- and Leu-18-substituted repressors showed altered specificity for position 7 of the operator [Ebright, Proc. Natl. Acad. Sci. USA 83 (1986) 303-307], the His-18 repressor did not affect specificity. This result may be related to the greater side-chain length of histidine compared to the other amino acid substitutions.  相似文献   

8.
We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene.  相似文献   

9.
A model is suggested for the lac repressor binding to the lac operator in which the repressor polypeptide chain sequences from Gly 14 to Ala 32 and from Ala 53 to Leu 71 are involved in specific interaction with operator DNA. A correspondence between the protein and DNA sequences is found which explains specificity of the repressor binding to the lac operator. The model can be extended to describe specific binding of other regulatory proteins to DNA.  相似文献   

10.
Targeting the Escherichia coli lac repressor to the mammalian cell nucleus   总被引:2,自引:0,他引:2  
M C Hu  N Davidson 《Gene》1991,99(2):141-150
We have previously shown that about 90% of total Escherichia coli lac repressor synthesized in mammalian cells is located in the cytoplasm [Hu and Davidson, Cell 48 (1987) 555-566]. To target a functional lac repressor to the nucleus, we mutated 10 nucleotides at the 3' end of the coding sequence, thus adding the nuclear localization signal of the simian virus 40 large-T antigen to the C terminus of the repressor. The mutant lacI gene and the wild-type (wt) gene, both in standard animal cell expression vectors, driven by the promoter of the Rous sarcoma virus long terminal repeat, were stably transfected into three rodent cell lines. In confirmation of our previous results, only about 10% of the wt repressor, but all of the mutant protein, was localized in the nucleus. DNase I footprint analyses showed that the mutant repressor retained the same operator DNA-binding specificity as wt repressor. Furthermore, both repressor-operator complexes could be dissociated by addition of isopropyl-beta-D-thiogalactopyranoside in vitro. However, the ratio of number of repressor molecules per nucleus that, by in vitro assay, could bind to the operator sequence to the number of monomer repressor polypeptides per nucleus, as determined by Western blotting, was about 1:4 for the wt repressor and about 1:30 for the mutant repressor. This suggests that: (a) the mutant repressor assembles into tetramers inefficiently; and/or (b) it has reduced binding affinity to the operator sequence; and/or (c) it has higher binding affinity to nonspecific DNA.  相似文献   

11.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

12.
13.
Evidence for leucine zipper motif in lactose repressor protein   总被引:10,自引:0,他引:10  
Amino acid sequence homology between the carboxyl-terminal segment of the lac repressor and eukaryotic proteins containing the leucine zipper motif with associated basic DNA binding region (bZIP) has been identified. Based on the sequence comparisons, site-specific mutations have been generated at two sites predicted to participate in oligomer formation based on the three-leucine heptad repeat at positions 342, 349, and 356. Leu342----Ala, Leu349----Ala, and Leu349----Pro have been isolated and their oligomeric state and ligand binding properties evaluated. These mutant proteins do not form tetramers but exist as stable dimers with inducer binding comparable with the wild-type protein. Apparent operator affinities for lac repressor proteins with mutations in the proposed bZIP domain were significantly lower than the corresponding wild-type values. For these dimeric mutant proteins, the monomer-dimer equilibrium is linked to the apparent operator binding constant. The values for the monomer-monomer binding constant and for the intrinsic operator binding constant for the dimer cannot be resolved from measurements of the observed Kd for operator DNA. Further studies on these proteins are in progress.  相似文献   

14.
H M Sasmor  J L Betz 《Gene》1990,89(1):1-6
We have analyzed lac repressor binding in vivo and in vitro to several symmetric lac operator sequences. Two features of the operator appear to be important for repressor binding: sequence, both of the operator and of its extended regions, and the spacing of the operator halves. Host mutations that alter DNA superhelical density (topA, gyrB) did not change the relative affinity of cloned symmetric operator sequences for repressor. Analysis by dimethylsulfate methylation and DNaseI digestion of repressor-operator complexes indicated that repressor makes symmetric contacts with the symmetric operator, in contrast to its contacts with the two halves of the natural operator.  相似文献   

15.
We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein.  相似文献   

16.
Singly end-labeled DNA fragments containing the lactose operator were methylated in the presence of the lactose repressor and homogeneous preparations of its proteolytic fragments. Binding of core protein produced by mild trypsin digestion yielded a methylation perturbation pattern that differed significantly from that elicited by binding to intact repressor, although similarities in the patterns for these related proteins were noted in the central, asymmetric region of the operator. An NH2-terminal peptide (residues 1 to 56) from lac repressor bound operator fragments in a nitrocellulose filter assay, but failed to perturb DNA methylation significantly relative to the pattern in the absence of peptide. Binding of hybrid tetramers of core and intact repressor monomers produced related but unique methylation patterns for the purines on the operator fragment. The general pattern of perturbation observed suggests preferred binding of a single NH2 terminus to the promoter-distal region of the operator and asymmetric interaction of the core region with the operator sequence. Differences in purine methylation patterns produced by the presence of effector complexes of repressor and core protein suggest the possible nature of changes in protein topology that result in the affinity changes accompanying induction.  相似文献   

17.
A model is proposed for lac repressor-lac operator binding which accounts for the tetrameric subunit structure of the lac repressor and for factors involved in the strength, specificity and regulation of repressor-operator interaction. The model employs a π-helix in the amino terminal 25 residues of the lac repressor whereby three tyrosine residues of each subunit intercalate between base pairs of the lac operator. For the outer palindromic sequences of the operator, base specificity is provided by amino acids adjacent to the carboxyl sides of the tyrosine residues of two of the subunits. The inner palindromic sequences which bind the other two subunits form stems of hairpin loops in the operator. Base specificity for these two subunits is provided by amino acids adjacent to the amino sides of the tyrosine residues. In addition to 12 intercalated tyrosine residues, the model provides for a total of at least eight electrostatic interactions and ten sequence-specific hydrogen bonds.  相似文献   

18.
19.
The effects of prior covalent cysteine modification or nonspecific DNA presence on the reaction of lac repressor protein with N-bromosuccinimide have been investigated. At low excesses, N-bromosuccinimide oxidation causes loss of operator DNA binding activity with simultaneous retention of inducer and nonspecific DNA binding activities. Cysteine and methionine are oxidized under the conditions utilized. Covalent modification of the cysteines of repressor prior to reaction decreased the observed loss of operator DNA binding capacity; the presence of nonspecific DNA partially prevented oxidation of the cysteines by N-bromosuccinimide, and concurrent protection of operator binding ability was observed. Methionine oxidation was observed in the cases where protection of the operator DNA binding capacity of repressor was seen. The region surrounding cysteine 107 was found to be influential in maintaining intact operator DNA binding function in repressor. This observation provides chemical evidence for the contribution of the core region of repressor in determining specificity of the protein in binding the lac operator. The protection from oxidation of cysteine residues in the core region by the presence of nonspecific DNA suggests that this binding influences the core region of the protein.  相似文献   

20.
The interaction between protein and DNA is usually regulated by a third species, an effector, which can be either a protein or a small molecule. Convenient methods capable of detecting protein-DNA interaction and its regulation are highly desirable research tools. In the current study, we developed a method to directly “visualize” the interaction between a protein-DNA pair and its effector through the coupling with gold nanoparticles (AuNPs). As a proof-of-concept experiment, we constructed a model system based on the interaction between the lac repressor (protein) and operator (DNA) and its interplay with the lac operon inducer isopropyl β-d-1-thiogalactopyranoside (IPTG, which inhibits the interaction between the lac repressor and operator). We coated AuNPs with the lac operator sequences and mixed them with the lac repressor. Because the lac repressor homotetramer contains two DNA binding modules, it bridged the particles and caused them to aggregate. We demonstrated that the assembly of DNA-modified AuNPs correlated with the presence of the corresponding protein and effector in a concentration-dependent manner. This AuNP-based platform has the potential to be generalized in the creation of reporter and detection systems for other interacting protein-DNA pairs and their effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号