首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To search for more effective tuberculosis (TB) subunit vaccines, antigens expressed in different growth stages of Mycobacterium tuberculosis (M. tuberculosis), such as RpfE (Rv2450c) produced in the stage of resuscitation, Mtb10.4 (Rv0288), Mtb8.4 (Rv1174c), ESAT6 (Rv3875), Ag85B (Rv1886c) mainly secreted by replicating bacilli, and HspX (Rv2031c) highly expressed in dormant bacilli, were selected to construct six fusion proteins: ESAT6-Ag85B-MPT64190-198-Mtb8.4 (EAMM), Mtb10.4-HspX (MH), ESAT6-Mtb8.4, Mtb10.4-Ag85B, ESAT6-Ag85B, and ESAT6-RpfE. The six fusion proteins were separately emulsified in an adjuvant composed of N,N’-dimethyl-N, N’-dioctadecylammonium bromide (DDA), polyribocytidylic acid (poly I:C) and gelatin to construct subunit vaccines, and their protective effects against M. tuberculosis infection were evaluated in C57BL/6 mice. Furthermore, the boosting effects of EAMM and MH in the adjuvant of DDA plus trehalose 6,6''-dimycolate (TDM) on BCG-induced immunity were also evaluated. It was found that the six proteins were stably produced in E. coli and successfully purified by chromatography. Among them, EAMM presented the most effective protection against M. tuberculosis. Interestingly, the mice that received EAMM+MH had significantly lower bacterial counts in the lungs and spleens than the single protein vaccinated groups, and had the same effect as those that received BCG. In addition, EAMM and MH could improve BCG-primed protective efficacy against M. tuberculosis infection in mice. In conclusion, the combination of EAMM and MH containing antigens from both replicating and dormant stages of the bacilli could induce robust immunity against M. tuberculosis infection in mice and may serve as promising subunit vaccine candidate.  相似文献   

2.
Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 105 M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection.  相似文献   

3.
One third of the world population carries a latent tuberculosis (TB) infection, which may reactivate leading to active disease. Although TB latency has been known for many years it remains poorly understood. In particular, substances of host origin, which may induce the resuscitation of dormant mycobacteria, have not yet been described. In vitro models of dormant (“non-culturable”) cells of Mycobacterium smegmatis (mc2155) and Mycobacterium tuberculosis H37Rv were used. We found that the resuscitation of dormant M. smegmatis and M. tuberculosis cells in liquid medium was stimulated by adding free unsaturated fatty acids (FA), including arachidonic acid, at concentrations of 1.6–10 µM. FA addition enhanced cAMP levels in reactivating M. smegmatis cells and exogenously added cAMP (3–10 mM) or dibutyryl-cAMP (0.5–1 mM) substituted for FA, causing resuscitation of M. smegmatis and M. tuberculosis dormant cells. A M. smegmatis null-mutant lacking MSMEG_4279, which encodes a FA-activated adenylyl cyclase (AC), could not be resuscitated by FA but it was resuscitated by cAMP. M. smegmatis and M. tuberculosis cells hyper-expressing AC were unable to form non-culturable cells and a specific inhibitor of AC (8-bromo-cAMP) prevented FA-dependent resuscitation. RT-PCR analysis revealed that rpfA (coding for resuscitation promoting factor A) is up-regulated in M. smegmatis in the beginning of exponential growth following the cAMP increase in lag phase caused by FA-induced cell activation. A specific Rpf inhibitor (4-benzoyl-2-nitrophenylthiocyanate) suppressed FA-induced resuscitation. We propose a novel pathway for the resuscitation of dormant mycobacteria involving the activation of adenylyl cyclase MSMEG_4279 by FAs resulted in activation of cellular metabolism followed later by increase of RpfA activity which stimulates cell multiplication in exponential phase. The study reveals a probable role for lipids of host origin in the resuscitation of dormant mycobacteria, which may function during the reactivation of latent TB.  相似文献   

4.
Understanding the biology of the tuberculosis pathogen during dormant asymptomatic infection, called latent tuberculosis is crucial to decipher a resilient therapeutic strategy for the disease. Recent discoveries exhibiting presence of pathogen’s DNA and bacilli in mesenchymal stem cells (MSCs) of human and mouse despite completion of antitubercular therapy, indicates that these specific cells could be one of the niches for dormant Mycobacterium tuberculosis in humans. To determine if in vitro infection of human MSCs could recapitulate the in vivo characteristics of dormant M. tuberculosis, we examined survival, phenotype, and drug susceptibility of the pathogen in MSCs. When a very low multiplicity of infection (1:1) was used, M. tuberculosis could survive in human bone marrow derived MSCs for more than 22 days without any growth. At this low level of infection, the pathogen did not cause any noticeable host cell death. During the later phase of infection, MSC-residing M. tuberculosis exhibited increased expression of HspX (a 16-kDa alpha-crystallin homolog) with a concurrent increase in tolerance to the frontline antitubercular drugs Rifampin and isoniazid. These results present a human MSC-based intracelllular model of M. tuberculosis infection to dissect the mechanisms through which the pathogen acquires and maintains dormancy in the host.  相似文献   

5.
To date, the possible existence of “nonculturable” (NC) but potentially viable forms has been shown for some bacteria. NC mycobacteria have attracted particular interest due to the assumption that the latent form of tuberculosis is associated with the conversion of its causative agent, Mycobacterium tuberculosis, into the NC state. A number of approaches have been developed to obtain NC forms of mycobacteria, but the mechanisms of transition into or from this state have been insufficiently studied. This review considers cell-cell communications involved in the formation and reactivation of NC forms of the bacteria M. smegmatis and M. tuberculosis. Special attention has been paid to the secreted Rpf family proteins, which belong to peptidoglycan hydrolases and participate in the resuscitation of NC mycobacteria.  相似文献   

6.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an extraordinarily successful pathogen of humankind. It has been estimated that up to one-third of the world’s population is infected with M. tuberculosis, and this population is an important reservoir for disease reactivation. Resuscitation promoting factor (Rpf) is a secretory protein, which was first reported in Micrococcus luteus. There are five functionally redundant Rpf-like proteins found in M. tuberculosis. Rpf promotes the resuscitation of dormant bacilli to yield normal, viable colony forming bacteria. All Rpfs share a conserved domain of about 70 amino acids and possess a lysozyme-like activity. The structural studies of the conserved domain suggest that Rpfs could be considered as a c-type lysozyme and lytic transglycosylases. Recently a novel class of nitrophenylthiocyanates (NPT) inhibitors of the muralytic activity of Rpf were reported which opens a new approach in the study of cell-wall hydrolyzing enzymes. This review describes molecular and structural studies conducted on Rpf proteins, their role in the resuscitation of dormant bacteria, in the reactivation of latent infection and identification of low molecular weight inhibitors of resuscitation promoting factors.  相似文献   

7.
The adipocytes are one of the non-professional phagocytes postulated to be a haven for Mycobacterium tuberculosis during persistence in the human host. The adipocyte – M. tuberculosis interaction data available to date are ex vivo. The present study was primarily aimed to investigate M. tuberculosis infection of adipocytes in course of infection of mouse model. Using primary murine adipocytes, the study first confirmed the infection and immunomodulation of natural adipocytes by M. tuberculosis. The bacilli could be isolated form visceral, subcutaneous, peri renal and mesenteric adipose depots of immunocompetent mice infected with M. tuberculosis intravenously. The bacilli could be isolated from adipocytes and the stromal vascular fraction, even though the numbers were significantly higher in the latter. The bacterial burden in the adipose depots was comparable to those in lungs in the early phase of infection. But with time, the burden in the adipose depots was either decreased or kept under control, despite the increasing burden in the lungs. Infected mice treated with standard anti tubercular drugs, despite effective elimination of bacterial loads in the lungs, continued to harbour M. tuberculosis in adipose depots at loads similar to untreated mice in the late infection phase.  相似文献   

8.
A model for studying mycobacterial L-form formation in vivo was established to demonstrate the ability of M. tuberculosis to behave as a drug-tolerant L-form persister. Rats were infected by intranasal (i.n.) and intraperitoneal (i.p.) routes with 1×108 cells/ml of M. tuberculosis. At weekly intervals during a period of five weeks, samples from lung, spleen, liver, kidney, mesenterial and inguinal lymph nodes, broncho-alveolar and peritoneal lavage liquid were plated simultaneously on Löwenstein-Jensen (LJ) medium or inoculated into specially supplemented for L-forms Dubos broth (drug-free and drug-containing variants). The use of liquid media enabled isolation of mycobacterial L-form cultures during the whole period of experiment including the last two weeks, when tubercle bacilli were not isolated on LJ medium. An unique feature of mycobacterial L-forms was their ability to grow faster than the classical tubercle bacilli. Isolation and growth of L-form cultures in primary drug-containing media demonstrated their drug-tolerant properties. Electron microscopy of liquid media isolates showed that they consisted of morphologically heterogenous populations of membrane-bound and of variable sized L-bodies that completely lack cell walls. The identity of the isolated non-acid fast and morphologically modified L-forms as M. tuberculosis was verified by specific spoligotyping test. The results contribute to special aspects concerning the importance of mycobacterial L-form phenomenon for persistence and latency in tuberculosis, phenotypic drug tolerance, as well as for diagnosis of difficult to identify morphologically changed tubercle bacilli which are often mistaken for contaminants.  相似文献   

9.
10.
11.
Dormant, non-replicating Mycobacterium tuberculosis H37Rv strain cultured in hypoxic conditions was used to infect THP-1 cells. CFUs counting, Kinyoun staining and electron microscopy showed that dormant bacilli infected THP-1 cells at a rate similar to replicating M. tuberculosis, but failed to grow during the first 6 days of infection. The absence of growth was specific to the intracellular compartment, as demonstrated by efficient growth in liquid medium. Quantification of β-actin mRNA recovered from infected cells showed that, in contrast with log-phase bacteria, infection with dormant bacilli determined a reduced THP-1 cell death. Gene expression of intracellular non-replicating bacteria showed a pattern typical of a dormant state. Intracellular dormant bacteria induced the activation of genes associated to a proinflammatory response in THP-1 cells. Though, higher levels of TNFα, IL-1β and IL-8 mRNAs compared to aerobic H37Rv infected cells were not paralleled by increased cytokine accumulation in the supernatants. Moreover, dormant bacilli induced a higher expression of inducible cox-2 gene, accompanied by increased PGE2 secretion. Overall, our data describe a new model of in vitro infection using dormant M. tuberculosis that could provide the basis for understanding how non-replicating bacilli survive intracellularly and influence the maintenance of the hypoxic granuloma.  相似文献   

12.
Mycobacterium tuberculosis reduces nitrate very strongly as compared to Mycobacterium bovis and M. bovis BCG. Nitrate reductase, in conjunction with niacin accumulation, constitutes one of the major biochemical tests used in clinical microbiology laboratories to differentiate M. tuberculosis from other members of the M. tuberculosis complex, as well as nontuberculous Mycobacteria. Determination of nitrate reductase activity is currently performed using cultures grown on solid media with a slow detection time and the need for large quantities of bacilli, as otherwise the test is not reliable. Hereby, we propose a nitrate reduction test coupled to Bactec MGIT960 system as a simple, rapid and economic method with a total gain of time of about 3 to 4 weeks over the conventional solid medium. In our study, almost all the M. tuberculosis and Mycobacterium canettii strains gave a strongly positive nitrate reductase result within 1 day of positive detection by the MGIT960 system. In contrast, M. bovis, M. bovis BCG and M. africanum strains remained negative even after 14 days of incubation. The possibility to detect nitrate reductase within 1 to 3 days of a positive culture using MGIT960 opens new perspectives with the possibility of confirming M. tuberculosis — starting directly from pathological specimens.  相似文献   

13.
A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naïve macrophages produced an antimicrobial effect, but only if naïve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naïve macrophages. The antimicrobial effect of naïve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naïve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naïve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis.  相似文献   

14.
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.  相似文献   

15.
Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function.  相似文献   

16.
Most cases of tuberculosis are due to reactivation of endogenous infection which may have lain quiescent or dormant for decades. How Mycobacterium tuberculosis survives for this length of time is unknown, but it is hypothesized that reduced oxygen tension may trigger the tubercle bacillus to enter a state of dormancy. Mycobacterium bovis BCG and M. tuberculosis H37Rv were cultured under aerobic, microaerobic, and anaerobic conditions. Their ultrastructural morphology was analyzed by transmission electron microscopy (TEM), and protein expression profiles were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). TEM revealed that the microaerobically and anaerobically cultured bacilli but not the aerobically cultured bacilli developed a strikingly thickened cell wall outer layer. The thickening was not observed in aerobically cultured stationary-phase bacilli or in anaerobically cultured Mycobacterium smegmatis. A highly expressed protein was detected by SDS-PAGE in microaerobic and anaerobic cultures and was identified as the 16-kDa small heat shock protein or α-crystallin homolog. Immunolocalization by colloidal gold immunoelectron microscopy identified three patterns of protein distribution in M. bovis BCG cultured under low oxygen tension. The 16-kDa protein was strongly associated with the cell envelope, fibrous peptidoglycan-like structures, and intracellular and peripheral clusters. These results suggest that tubercle bacilli may adapt to low-oxygen conditions by developing a thickened cell wall and that the 16-kDa protein may play a role in stabilizing cell structures during long-term survival, thus helping the bacilli survive the low oxygen tension in granulomas. As such, the cell wall thickening and the 16-kDa protein may be markers for the dormant state of M. tuberculosis.  相似文献   

17.
It has been suggested that the incidence of infection with mycobacteria other than typical tubercle (MOTT) bacilli is increasing. Laboratory and epidemiologic information relating to MOTT infection in British Columbia between 1972 and 1981 was analysed. Patient records for 1960-81 were also analysed. Of the 313 661 laboratory specimens 13 474 yielded Mycobacterium tuberculosis isolates and 3172, MOTT isolates. Over the 10 years the number of M. tuberculosis isolates declined, whereas the absolute and relative numbers of MOTT isolates increased. Members of the highly drug-resistant MAIS complex (M. avium-intracellulare, M. scrofulaceum and M. simiae) accounted for 73.3% of the 1778 potentially pathogenic MOTT isolates. MAIS isolation rates varied geographically. Analysis of patient records revealed 217 MOTT infections, of which 152 (70%) were due to MAIS organisms. Further studies are needed to determine the source of MAIS organisms in order that the infection and the disease may be more clearly understood.  相似文献   

18.
Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited.  相似文献   

19.
Serine/threonine protein kinases (STPK) play a major role in the physiology and pathogenesis of Mycobacterium tuberculosis. Here, we have examined the role of pknE, a STPK in the adaptive responses of M. tuberculosis using a deletion mutant ΔpknE. The survival of ΔpknE was assessed in the presence of stress (pH, surfactant and cell wall–damaging agents) and anti-tuberculosis drugs. ΔpknE had a defective growth in pH 7.0 and lysozyme (a cell wall–damaging agent) with better survival in pH 5.5, SDS and kanamycin (a second-line anti-tuberculosis drug). Furthermore, ΔpknE was reduced in cell size during growth in liquid media and exhibited hypervirulence in a guinea pig model of infection. In conclusion, our data suggest that pknE plays a role in adaptive response of M. tuberculosis regulating cellular integrity and survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号