首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The hydrological regime is important to the distribution of benthic organisms in streams. The objective of this study was to identify relationships between hydrological variables, describing the flow regime, and macrophyte cover, species richness, diversity and community composition in Danish lowland streams.
2. We quantified macrophyte vegetation in 44 Danish streams during summer by cover, species richness and diversity. Flow regime was characterized by 18 non-intercorrelated variables describing magnitude, frequency and duration of low and high flow events, timing or predictability of flow and general flow variability.
3. We found support in the stepwise multiple regressions analysis for our expectation that macrophyte cover is lowest in streams with high flow variability and highest in streams with long duration of low flow and low flow variability. We found support for the intermediate disturbance hypothesis as there were significant quadratic relationships between species richness and diversity as functions of disturbance frequency. There was poor discrimination in a detrended correspondence analysis (DCA) analysis of macrophyte community composition between four twinspan groups separating streams with different hydrological properties. Moreover, we did not find any relationship between the presence of disturbance-tolerant species and hydrological disturbance, suggesting that plant community composition developed independently of stream hydrology.  相似文献   

2.
SUMMARY 1. We examined the relationship between catchment land cover, sediment regime and fish assemblage structure in four small streams in the upper Little Tennessee River basin of North Carolina. Study streams drained similar sized catchments (17–31 km2) with different fractions of non-forested land cover. Non-forested land cover was <3% in two 'reference' streams, whereas it was 13 and 22% in two 'disturbed' streams. Land cover data were compared with sediment transport data (suspended and bedload), benthic habitat data (embeddedness, substratum composition and coverage of fines) and fishes collected in autumn 1997.
2. Suspended sediment concentration was significantly higher in disturbed streams during both baseflow and stormflow. During baseflow disturbed streams nearly always exceeded 10 nephelometric turbidity units (NTU), whereas reference streams never exceeded this threshold. The difference in suspended sediment concentration between reference and disturbed streams was more consistent at baseflow than at stormflow. Therefore, baseflow turbidity may be a useful indicator of potential stream degradation.
3. Disturbed sites had five- to nine-fold more bedload transport than reference sites. Both embeddedness and streambed instability increased with increasing non-forested land cover.
4. Relative abundance of fishes requiring clean cobble/gravel substratum for spawning was lower in disturbed streams, whereas relative abundance of mound-building cyprinids, their nest associates and fishes that excavate nests in soft sediments (centrarchids) was higher. Relative abundance of fishes spawning in benthic crevices and gravel (BC + G) declined as the proportion of non-forested land cover increased. This study supports growing evidence that human-induced sedimentation alters stream fish assemblages.  相似文献   

3.
4.
1. Blooms of the benthic, stalked diatom Didymosphenia geminata were first observed in New Zealand in 2004. Since then, D. geminata has spread to numerous catchments in the South Island and is also spreading in its native range. The species is a rare example of an invasive alga in lotic systems.
2. Ecosystem effects may be expected as D. geminata attains unusually high biomass in rivers. We examined data from three independent studies in three South Island, New Zealand, rivers for evidence of effects on periphyton biomass and benthic invertebrate communities.
3. The combined results confirmed that the presence of D. geminata was associated with greatly increased periphyton biomass and, in most cases, increased invertebrate densities. We also recorded shifts in community composition, dominated by increased densities of Oligochaeta. Chironomidae, Cladocera and Nematoda also generally increased in density with D. geminata . Significant increases or declines in other invertebrate taxa were inconsistent among rivers.
4. In all three studies, increased spatial invertebrate community homogeneity was associated with high D. geminata biomass at the within-river scale. However, no declines in taxon richness or diversity were detected.
5. Although ecosystem effects of D. geminata on existing periphyton biomass and invertebrate communities are measurable, no inferences can be made from the present data about effects on higher trophic levels (fish).  相似文献   

5.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

6.
Casey  H.  Farr  I. S. 《Hydrobiologia》1982,91(1):447-462
In rivers, variations in concentrations of many dissolved nutrients occur during spates. Increases are usually attributed to concentrated point or non-point inputs, and decreases to dilution associated with rainfall. Increased discharge disturbs sediments and benthic communities, but the effects of such disturbance on nutrient levels are difficult to isolate. Measurements of nutrient levels over three artificial spates revealed that substantial variations in dissolved organic carbon, dissolved phosphate, silicate, nitrate, and potassium levels could result from increased discharge in the absence of allochthonous inputs. Variations were closely related to peaks in suspended solids concentration or water height. Increases in biochemical oxygen demand and suspended bacteria also occurred. Variations in phosphate and silicate could be accounted for by a balance between release of ‘sediment interstitial water’ and exchange processes involving suspended and freshly exposed sediment. An increase in nitrate, during one spate, was probably due to a reduction in the effect of benthic denitrification. Small peaks in dissolved organic matter concentration were detected over each spate. We propose that within-stream disturbance is a factor which may contribute to variations in dissolved nutrient concentration during the rising hydrograph in natural spates.  相似文献   

7.
Kaller  M.D.  Hartman  K.J. 《Hydrobiologia》2004,518(1-3):95-104
When land use practices alter natural hydrologic and sediment delivery regimes, the effects usually are negative to macroinvertebrates. We hypothesized a threshold level of fine sediment accumulation in the substrate may exist where benthic macroinvertebrate abundance and diversity will be significantly reduced. We surveyed seven Appalachian streams with different levels of substrate fine sediment twice yearly from fall 1998 to spring 2000. Three riffles (with 2 replicates each) were sampled with a 0.25 mm Surber sampler in each season and stream. Simple linear regression was used to test relationships between substrate size classes and metrics, and nested ANOVA was used to test macroinvertebrate differences among streams. Consistent negative relationships with the finest substrate particles (<0.25 mm) were observed with EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa richness. In seasons of normal hydrology, EPT taxa richness significantly decreased (p<0.05) in streams where fine substrate particles (<0.25 mm) exceeded 0.8–0.9% of riffle substrate composition. In drought seasons, fine sediment (<0.25 mm) exceeded 0.8–0.9% in most surveyed streams, lowering macroinvertebrate diversity in all streams. In these streams, a threshold for EPT diversity appears to be in excess of 0.8–0.9% fine sediment (<0.25 mm) substrate accumulation. We suggest similar threshold levels exist in other streams where macroinvertebrate taxa are altered with potential effects on trophic webs and nutrient processing.  相似文献   

8.
Variable effects of sediment addition on stream benthos   总被引:7,自引:7,他引:0  
Two upper Piedmont streams were studied to determine the effects of road construction, especially sediment inputs. Benthic macroinvertebrate data suggest that the stream community responded to sediment additions in two different ways. Under high flow conditions the benthic fauna occurs mainly on rocky substrates. As sediment is added to a stream the area of available rock habitat decreases, with a corresponding decrease in benthic density. There is, however, little change in community structure. Under low flow conditions, stable-sand areas may support high densities of certain taxa. Density of the benthic macroinvertebrates in these areas may be much greater than the density recorded in control areas, and there are distinct changes in community structure.  相似文献   

9.
1. Willows, Salix spp., have been widely introduced as a riparian species in temperate Australia and New Zealand. The present study was a broad-scale observational survey to document the differences between reaches of river lined with willows and native vegetation in the community structure of benthic invertebrates and the resources which these plants use.
2. Nine rivers in south-eastern Tasmania were examined on three occasions in autumn, spring and summer. Taxa were identified to family level, with the exception of Oligochaeta and Acarina, and benthic organic matter (CPOM and FPOM) and epilithic biomass were measured for each reach.
3. Taxon diversity and evenness were lower in willowed reaches in autumn, and total macroinvertebrate density and number of taxa were lowest in willowed reaches in summer. No differences in the fauna between willowed and native reaches were observed in spring. Measures of community similarity of the fauna in willowed and native reaches were significantly different in autumn and summer, but not in spring.
4. The taxa responsible for the significant differences seemed to be responding to differences in food availability and habitat quality in reaches of each vegetation type. Organic matter standing stock was higher in willowed reaches in autumn although the influence of these litter inputs on the fauna were not marked. Epilithon biomass was highest in autumn and spring in willowed reaches when shading in these reaches was least.
5.  The most marked differences between willowed and native reaches were during summer low flows, when the instream fauna appeared to be responding to changes to shading, water quality and the quality of the habitat.  相似文献   

10.
1. Natural experiments, in the form of disturbance from spates, were used to study the resistance and resilience of interstitial communities. Investigations were conducted in a by-passed section of the Rhône River characterized by an artificial hydrology with frequent spates separated by regular minimum discharge of 30 m3 s–1. 2. Three areas of a bar were studied, upwellings at the head of the bar (stations 1 and 2), and downwelling at the tail of the bar (station 3). In the head of the bar the substratum was characterized by stable cobbles, while mobile gravels dominated in the tail of the bar. At each station, samples were derived from four depths (0.5, 1.0, 1.5 and 2.0 m below the surface of the substratum). Fifteen spates occurred during the study period whose peak discharge ranged from 50 to 1640 m3 s–1. Temporal variations of the fauna were studied by comparing the spate effect observed 1 day (resistance), 7 days (resilience) and 17 days after the spate. Within-class correspondence analysis was used to compare the temporal variability of the fauna within each class {station/depth}. 3. The fauna differed markedly between the three stations, and the relative density of stygobionts (i.e. hypogean fauna) decreased from 55% at station 1 to 4% at station 3. The spatio-temporal variability increased dramatically from station 1 to station 3. 4. The results suggest that the hyporheic zone acts as a patchy refugium: the stations were more or less active refugial zones, depending on hydrology (upwelling or downwelling), substratum stability and spate amplitude. 5. The downwelling station was the main refugium area for benthic taxa. Important migrations of benthic groups (e.g. Gammarus, Cladocera) or hyporheic taxa (e.g. Cyclopoida and Harpacticoida) were observed deep into the sediment (2 m). Vertical movements of stygobionts (Niphargus, Niphargopsis) were also observed at high amplitude spates. These movements were very important (great numbers of individuals migrated) at low and medium magnitude spates, but were unimportant at high discharge, when the threshold of sediment instability was exceeded. In this case the substratum became mobile and induced drift of benthic organisms. 6. Conversely, in the upwelling stable stations, accumulation was less important (lower number of species and lower densities) but more constant with increasing discharge, suggesting that substratum stability is also a key factor. 7. Generally recovery was rapid at all stations (within 7 days) but no relationships were found between resilience (rate of recovery) and the amplitude of spates.  相似文献   

11.
12.
  • 1 The combined effects of fish predation, substrate complexity and flow on benthic macroinvertebrates inhabiting riffles was investigated in a Hong Kong stream. Predation was manipulated using fish inclusion/exclusion cages containing complex (= many refuges) or simple (= few refuges) substrates. Experiments were undertaken during the winter dry season, when disturbance due to flow events was minimal, and repeated during the summer monsoon, when the stream experienced spates of varying intensity and duration.
  • 2 Predation by the fish, Oreonectes platycephalus, significantly reduced the abundance of macroinvertebrates, especially chironomids and mayflies. Because chironomids (mostly Chironominae) were the dominant cage colonists, there was also a reduction in total macroinvertebrate density.
  • 3 Predator impacts were significantly lessened during the wet season, when macroinvertebrate densities increased considerably, but significant reductions in the densities of vulnerable taxa and total macroinvertebrate abundance were nevertheless apparent.
  • 4 Substrate complexity (the presence of prey refuges) had no significant effect on the ability of predators to reduce prey abundance.
  • 5 Detritus accumulated in cages during the latter part of the study, and densities of most taxa were correlated with detrital standing stocks.
  • 6 The results of this experiment indicate that biotic interactions such as predation may be suppressed during periods of spate-induced disturbance, although they can still influence benthic communities significantly. However, the effects of predation are highly taxon specific and may vary among streams in response to changes in predator and prey species composition, or the severity and duration of spates.
  相似文献   

13.
Disturbance is one of the mechanisms which counteract competitive exclusion of populations in resource-limited communities, thereby facilitating coexistence and maintaining community species diversity. The intermediate disturbance hypothesis predicts maximum diversity at intermediate disturbance intensities and frequencies. This paper reports results of an experimental test of this hypothesis using a coastal benthic community of rhizopods (Protozoa: Rhizopoda), and experimental sediment resuspension as a simulated natural disturbance. We carried out two experiments of 5 d duration which focussed on the effects of resuspension intensity and frequency, respectively, on the abundance, species richness and on the Shannon-Weaver diversity index of rhizopod communities in surface sediments of natural sediment cores from the coastal southern Baltic. Care was taken to adjust the experimental treatments to the natural disturbance regime in this area.
Twenty-four and 28 rhizopod species were present during the intensity and frequency experiment, respectively. Small bacterivorous rhizopods of the Vannellidae, Cochliopodidae, Paramoebidae and Rhizopoda incertae sedis dominated the communities during both experiments. Rhizopod abundance, species richness and diversity increased towards the end of the intensity experiment, but they did not show effects of disturbance intensity. Similarly, no effects of disturbance frequency were found during the frequency experiment. Our results indicate that coexistence and community diversity maintenance in benthic rhizopod communities, and probably in benthic heterotrophic protistan communities in general, may rely on different mechanisms than intermediate disturbance, such as trophic niche separation and high rates of dispersal and colonisation.  相似文献   

14.
1. Environmental variables, benthic algal biomass and macroinvertebrate fauna were examined from September 1999 to January 2000 (austral summer) along two glacier-fed rivers in South Island, New Zealand.
2. The rivers were characterized by high flow variability, high turbidity and physically disturbed beds. Water temperature ranged from <1 °C near the glacier margin to 10 °C further downstream.
3. Epilithic algal biomass was very low (<0.1 mg m–2) in months characterized by heavy rainfall, but ranged from 1.1 to 14.4 mg m–2 following an extended period with negligible precipitation.
4. Abundance and diversity of invertebrates in both rivers was low. Dominant taxa were Chironomidae (Orthocladiinae, Podonominae, Diamesinae), although mayfly species ( Deleatidium : Leptophlebiidae) also occurred at most sites. A species of Eukiefferiella (Orthocladiinae) was collected at all sites and was the most abundant invertebrate close to the glacier margins. No meiofauna were found in either river.
5. Faunal diversity increased at the lowermost stations where species of Plecoptera, Trichoptera, Coleoptera and non-chironomid Diptera also occurred.
6. The faunas of the two New Zealand rivers conformed to the conceptual model of Milner & Petts (1994) in that taxon richness increased downstream with water temperature. However, invertebrate abundance increased downstream in only one of the two rivers. Also in contrast to the model predictions, Leptophlebiidae and Orthocladiinae, rather than Diamesinae, dominated the fauna at the coldest sites.  相似文献   

15.
Field experiments on flow refugia in streams   总被引:2,自引:0,他引:2  
1. Field experiments were carried out to determine whether animals move into areas of low shear stress during periods of peak flow and therefore avoid hydraulic disturbance.
2. Flow at the scale of 0.05 m2 patches was reduced experimentally by creating artificial 'refugia'. Invertebrate colonization of cages with 1.1 mm mesh sides, which provided such potential refugia by reducing hydraulic forces within the cage, was compared with colonization of cages with coarser (15 mm) mesh which did not restrict the flow.
3. Colonization of these cages was tested over a series of weekly periods in two different streams. Nine trials were completed in a stream with abundant natural flow refugia (Broadstone Stream, SE England), and during three of these trials strong spates occurred. Six trials were completed in a stream with comparatively few natural flow refugia (Dargall Lane, SW Scotland), and peak flows were relatively less.
4. In Broadstone Stream, the relative colonization of refugium cages was greatest during periods of peak flow, suggesting animals had used these low-flow areas as refugia during spates. Use of the artificial refugia did not occur in Dargall Lane, at least at the flows achieved during the trials.
5. Our results are consistent with the hypothesis that stream invertebrates accumulate in refugia during high flow disturbances. Whether their distribution among patches is altered by active or passive means remains unclear.  相似文献   

16.
1. Animals exploiting different resources may nevertheless interact if one species indirectly alters the abundance and distribution of the food of the other. To analyse this indirect effect, we conducted experiments in artificial pools and in the field to investigate the influence of the algivorous fish Plecoglossus altivelis altivelis (known as the ayu) on two species of insectivorous benthic fish, Pseudogobio esocinus esocinus and the goby Gymnogobius petschiliensis .
2. In the pool experiments, algal biomass was not correlated with the number of ayu, but the percentage of blue-green bacteria rose as the number increased. The number of aquatic macroinvertebrates on the upper surface of ceramic tiles placed in the pool bed decreased as the number of ayu increased.
3. Although ayu and the benthic species did not interact directly, the reduction in invertebrate abundance on the upper surface of tiles in the pool reduced the growth rate of the benthic insectivores.
4. In field experiments, the introduction of ayu into habitats with P. esocinus esocinus or G. petschiliensis reduced the growth rate of these benthic fish. In the field experiment that was carried out over 5 years in the G. petschiliensis habitat, the population density of the goby decreased when ayu were stocked.
5. The ayu is a strong interactor or bioengineer in streams, affecting not only benthic algae but also aquatic invertebrates and fishes. We conclude that to predict the outcome of interspecific interactions amongst fishes in streams with high algal production, possible indirect effects must be considered alongside better known direct effects.  相似文献   

17.
Efforts to limit plant growth in streams by reducing nutrients would benefit from an understanding of the relative influences of nutrients, streamflow, light, and other potentially important factors. We measured macrophytes, benthic algae, nutrients in water and sediment, discharge, and shading from 30 spring-fed or runoff-influenced streams in the upper Snake River basin, ID, USA. We hypothesized that in hydrologically stable, spring-fed streams with clear water, macrophyte and benthic algae biomass would be a function of bioavailable nutrients in water or sediments, whereas in hydrologically dynamic, runoff-influenced streams, macrophyte and benthic algae biomass would further be constrained by flow disturbance and light. These hypotheses were only partly supported. Nitrogen, both in sediment and water, was positively correlated with macrophyte biomass, as was loosely sorbed phosphorus (P) in sediment. However, P in water was not. Factors other than nutrient enrichment had the strongest influences on macrophyte species composition. Benthic algal biomass was positively correlated with loosely sorbed sediment P, lack of shade, antecedent water temperatures, and bicarbonate. These findings support the measurement of bioavailable P fractions in sediment and flow histories in streams, but caution against relying on macrophyte species composition or P in water in nutrient management strategies for macrophytes in streams.  相似文献   

18.
Global climate change is likely to modify the ecological consequences of currently acting stressors, but potentially important interactions between climate warming and land‐use related stressors remain largely unknown. Agriculture affects streams and rivers worldwide, including via nutrient enrichment and increased fine sediment input. We manipulated nutrients (simulating agricultural run‐off) and deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0–6°C above ambient) simultaneously in 128 streamside mesocosms to determine the individual and combined effects of the three stressors on macroinvertebrate community dynamics (community composition and body size structure of benthic, drift and insect emergence assemblages). All three stressors had pervasive individual effects, but in combination often produced additive or antagonistic outcomes. Changes in benthic community composition showed a complex interplay among habitat quality (with or without sediment), resource availability (with or without nutrient enrichment) and the behavioural/physiological tendency to drift or emerge as temperature rose. The presence of sediment and raised temperature both resulted in a community of smaller organisms. Deposited fine sediment strongly increased the propensity to drift. Stressor effects were most prominent in the benthic assemblage, frequently reflected by opposite patterns in individuals quitting the benthos (in terms of their propensity to drift or emerge). Of particular importance is that community measures of stream health routinely used around the world (taxon richness, EPT richness and diversity) all showed complex three‐way interactions, with either a consistently stronger temperature response or a reversal of its direction when one or both agricultural stressors were also in operation. The negative effects of added fine sediment, which were often stronger at raised temperatures, suggest that streams already impacted by high sediment loads may be further degraded under a warming climate. However, the degree to which this will occur may also depend on in‐stream nutrient conditions.  相似文献   

19.
1. Flow conditions were modified over patches of river bed in three rivers in south-western Australia to determine the effects of turbulence on benthic invertebrate communities.
2. Artificial structures to increase downstream turbulence were developed in a laboratory flume. In the field, these increased turbulence intensity by 35% for a 20% reduction in velocity.
3. Patches of gravel were placed in each river and turbulence-generating structures allocated randomly to half of these, creating treatment patches. An acoustic Doppler velocimeter was used to measure flow conditions over both treatment and control patches at several heights above the bed. After 6 weeks, the invertebrate fauna of the gravel patches were sampled to examine the response to modified flow conditions.
4. The treatments increased relative turbulence intensity twofold for a reduction in velocity of between 3 and 5 cm s−1, but turbulence intensity was significantly higher in only one of the three rivers.
5. There were no significant effects of increased relative turbulence intensity on any aspect of the invertebrate assemblage. This may be a result of the fairly small increase in relative turbulence intensity created during the experiment, the spatial scale of the manipulation or the types of stream community studied.  相似文献   

20.
SUMMARY 1. In the upper Rhône catchment (Swiss Alps), modifications in the longitudinal pattern of environmental conditions and the benthic macroinvertebrate fauna were investigated in a glacier-fed stream (Rhône) at its confluence with a smaller glacier-fed tributary (Mutt) in June, August and September 1998. The distance to the source glacier was greater for the Mutt than for the Rhône.
2. Environmental conditions were harsher for the biota in the main stream upstream of the confluence than in the tributary. The tributary upstream of the confluence was characterised by higher taxonomic richness and abundance of the zoobenthos than the Rhône upstream.
3. Although environmental conditions in the main stream were little modified by the tributary, the fauna was richer and more diverse below the confluence. During the period of ice melt, colonisation from the Mutt led to the occurrence of faunal elements atypical of glacial streams in the main glacial stream upstream of the confluence, where water temperature remains below 4 °C.
4. Although contributing an average of only 10% to the Rhône discharge, the Mutt tributary is suggested to be the faunal driver of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号