首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
M B Murataliev 《Biochemistry》1992,31(51):12885-12892
The evidence is presented that the ADP- and Mg(2+)-dependent inactivation of MF1-ATPase during MgATP hydrolysis requires binding of ATP at two binding sites: one is catalytic and the second is noncatalytic. Binding of the noncatalytic ATP increases the rate of the inactive complex formation in the course of ATP hydrolysis. The rate of the enzyme inactivation during ATP hydrolysis depends on the medium Mg2+ concentration. High Mg2+ inhibits the steady-state activity of MF1-ATPase by increasing the rate of formation of inactive enzyme-ADP-Mg2+ complex, thereby shifting the equilibrium between active and inactive enzyme forms. The Mg2+ needed for MF1-ATPase inactivation binds from the medium independent from the MgATP binding at either catalytic or noncatalytic sites. The inhibitory ADP molecule arises at the MF1-ATPase catalytic site as a result of MgATP hydrolysis. Exposure of the native MF1-ATPase with bound ADP at a catalytic site to 1 mM Mg2+ prior to assay inactivates the enzymes with kinact 24 min-1. The maximal inactivation rate during ATP hydrolysis at saturating MgATP and Mg2+ does not exceed 10 min-1. The results show that the rate-limiting step of the MF1-ATPase inactivation during ATP hydrolysis with excess Mg2+ precedes binding of Mg2+ and likely is the rate of formation of enzyme with ADP bound at the catalytic site without bound P(i). This complex binds Mg2+ resulting in inactive MF1-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

3.
In the present study, the question of whether the two myosin active sites are identical with respect to ATP binding and hydrolysis was reinvestigated. The stoichiometry of ATP binding to myosin, heavy meromyosin, and subfragment-1 was determined by measuring the fluorescence enhancement caused by the binding of MgATP. The amount of irreversible ATP binding and the magnitude of the initial ATP hydrolysis (initial Pi burst) was determined by measuring [gamma-32P]ATP hydrolysis with and without a cold ATP chase in a three-syringe quenched flow apparatus. The results show that, under a wide variety of experimental conditions: 1) the stoichiometry of ATP binding ranges from 0.8 to 1 mol of ATP/myosin active site for myosin, heavy meromyosin, and subfragment-1, 2) 80 to 100% of this ATP binding is irreversible, 3) 70 to 90% of the irreversibly bound ATP is hydrolyzed in the initial Pi burst, 4) the first order rate constant for the rate-limiting step in ATP hydrolysis by heavy meromyosin is equal to the steady state heavy meromyosin ATPase rate only if the latter is calculated on the basis of two active sites per heavy meromyosin molecule. It is concluded that the two active sites of myosin are identical with respect to ATP binding and hydrolysis.  相似文献   

4.
The large change in fluorescence emission of 1-N6-etheno-2-aza-ATP (epsilon-aza-ATP) has been used to investigate the kinetic mechanism of etheno-aza nucleotide binding to bovine cardiac myosin subfragment 1 (myosin-S1) and actomyosin subfragment 1 (actomyosin-S1). The time course of nucleotide fluorescence enhancement observed during epsilon-aza-ATP hydrolysis is qualitatively similar to the time course of tryptophan fluorescence enhancement observed during ATP hydrolysis. In single turnover experiments, the nucleotide fluorescence rapidly increases to a maximum level, then decreases with a rate constant of 0.045 s-1 to a final level, which is about 30% of the maximal enhancement; a similar fluorescence enhancement is obtained by adding epsilon-aza-ADP to cardiac myosin-S1 or actomyosin-S1 under the same conditions (100 mM KCl, 10 mM 4-morpholinepropanesulfonic acid, 5 mM MgCl2, 0.1 mM dithiothreitol, pH 7.0, 15 degrees C). The kinetic data are consistent with a mechanism in which there are two sequential (acto)myosin-S1 nucleotide complexes with enhanced nucleotide fluorescence following epsilon-aza-ATP binding. The apparent second order rate constants of epsilon-aza-ATP binding to cardiac myosin subfragment 1 and actomyosin subfragment 1 are 2-12 times slower than those for ATP. Actin increases the rate of epsilon-aza-ADP dissociation from bovine cardiac myosin-S1 from 1.9 to 110 s-1 at 15 degrees C which can be compared to 0.3 and 65 s-1 for ADP dissociation under similar conditions. Although there are quantitative differences between the rate and equilibrium constants of epsilon-aza- and adenosine nucleotides to cardiac actomyosin-S1 and myosin-S1, the basic features of the nucleotide binding steps of the mechanism are unchanged.  相似文献   

5.
D Leckband  G G Hammes 《Biochemistry》1988,27(10):3629-3633
The kinetic behavior of tightly bound nucleotides on chloroplast coupling factor from spinach was determined under phosphorylating and nonphosphorylating conditions. Chloroplast coupling factor 1 (CF1) was labeled with tightly bound radioactive ADP and/or ATP at two specific sites and reconstituted with thylakoid membranes depleted of CF1 by treatment with NaBr. The initial incorporation and dissociation of ADP from one of the sites requires light but occurs at the same rate under phosphorylating and non-phosphorylating conditions. The initial rate is considerably slower than the rate of ATP synthesis, but nucleotide exchange is very rapid during steady-state ATP synthesis. A direct correspondence between this nucleotide binding site and a site on soluble CF1 that hydrolyzes ATP was demonstrated. A second site binds MgATP very tightly; the MgATP does not dissociate during ATP synthesis nor does its presence alter the rate of ATP synthesis. This is analogous to the behavior found for soluble CF1 during ATP hydrolysis. These results demonstrate that the tight-binding nucleotide sites on soluble CF1 and membrane-bound coupling factor are essentially identical in terms of binding properties and kinetic behavior during ATP hydrolysis and synthesis.  相似文献   

6.
The F1 moiety of the rat liver mitochondrial ATP synthase/ATPase complex contains as isolated 2 mol Mg2+/mol F1, 1 mol of which is nonexchangeable and the other which is exchangeable (N. Williams, J. Hullihen, and P.L. Pedersen, (1987) Biochemistry 26, 162-169). In addition, the enzyme binds 1 mol ADP/mol F1 and 3 mol AMP.PNP, the latter of which can bind in complex formation with divalent cation and displace the Mg2+ at the exchangeable site. Thus, in terms of ligand binding sites the fully loaded rat liver F1 complex contains 3 mol MgAMP.PNP, 1 mol ADP, and 1 mol Mg2+. In this study we have used several metal ATP complexes or analogs thereof to gain further insight into the ligand binding domains of rat liver F1 and the mechanism by which it catalyzes ATP hydrolysis in soluble and membrane bound form. Studies with LaATP confirmed that MgATP is the most likely substrate for rat liver F1, and provided evidence that the enzyme may contain additional Mg2+ binding sites, undetected in previous studies of F1-ATPases, that are required for catalytic activity. Thus, F1 containing the thermodynamically stable LaATP complex in place of MgATP requires added Mg2+ to induce ATP hydrolysis. As Mg2+ cannot readily displace La2+ under these conditions there appears to be a catalytically important class of Mg2+ binding sites on rat liver F1, distinct from the nonexchangeable Mg2+ site and the sites involved in binding MgATP. Additional studies carried out with exchange inert metal-nucleotide complexes involving rhodium and the Mg2+ and Cd2+ complexes of ATP beta S and ATP alpha S imply that the rate-limiting step in the ATPase reaction pathway occurs subsequent to the P gamma-O-P beta bond cleavage steps, perhaps at the level of Mg(ADP)(Pi) hydrolysis or MgADP release. Evidence is presented that Mg2+ remains coordinated to the leaving group of the reaction, i.e., the beta phosphoryl group. Finally, in contrast to soluble F1, F1 bound to F0 in the inner mitochondrial membrane failed to discriminate between the Mg2+ complexes of the ATP beta S isomers. This indicates that a fundamental difference may exist between the catalytic or kinetic mechanism of F1 and the more physiologically intact F0F1 complex.  相似文献   

7.
The heat of binding of rabbit skeletal myosin subfragment 1 (myosin-S1) and heavy meromyosin (HMM) to F-actin has been measured by batch calorimetry. Proton release measurements in unbuffered solutions indicate that less than 0.1 mol of protons is absorbed or released per mol of myosin head bound to actin. Hence, the measured heats are approximately equal to the enthalpy of myosin-S1 and HMM binding to actin. The enthalpy of binding of myosin-S1 to actin was +22 +/- 3 and +27 +/- 5 kJ/mol of myosin-S1 in two series of experiments at 12 degrees C and +26 +/- 5 kJ/mol of myosin-S1 at 0 degrees C, indicating that delta Cp for this reaction in the range of 0-12 degrees C is small (-80 J/mol/K). The enthalpy of binding of HMM to actin at 12 degrees C was found to be +26 +/- 1 kJ/mol of myosin head. The enthalpies determined here and the equilibrium constants obtained from the literature for measurements at 20 degrees C under identical solvent conditions were used to estimate the entropy of the association of myosin S1 and HMM with F-actin: +235 J/mol/K for myosin-S1 and +190 J/mol of myosin head/K for HMM. Thermodynamic parameters of the interaction of myosin-S1 with actin and ADP or AMP-PNP can be evaluated using the enthalpy of association of myosin-S1 with actin determined here, together with literature values for the equilibrium constants and enthalpies of binding of these nucleotides to myosin-S1. The calculated enthalpies of binding of ADP or AMP-PNP to actomyosin-S1 are small and negative.  相似文献   

8.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

9.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Myosin is the most comprehensively studied molecular motor that converts energy from the hydrolysis of MgATP into directed movement. Its motile cycle consists of a sequential series of interactions between myosin, actin, MgATP, and the products of hydrolysis, where the affinity of myosin for actin is modulated by the nature of the nucleotide bound in the active site. The first step in the contractile cycle occurs when ATP binds to actomyosin and releases myosin from the complex. We report here the structure of the motor domain of Dictyostelium discoideum myosin II both in its nucleotide-free state and complexed with MgATP. The structure with MgATP was obtained by soaking the crystals in substrate. These structures reveal that both the apo form and the MgATP complex are very similar to those previously seen with MgATPgammaS and MgAMP-PNP. Moreover, these structures are similar to that of chicken skeletal myosin subfragment-1. The crystallized protein is enzymatically active in solution, indicating that the conformation of myosin observed in chicken skeletal myosin subfragment-1 is unable to hydrolyze ATP and most likely represents the pre-hydrolysis structure for the myosin head that occurs after release from actin.  相似文献   

11.
Polarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle. The maximum difference in orientation and mobility of the oscillator (4 degrees and 30%, respectively) was observed between actomyosin in the presence of MgATP, and actomyosin in the presence of MgADP. Caldesmon actin-binding sites C and B' inhibit formation of actomyosin strong binding states, while site B activates it. It is suggested that actin-myosin interaction in ATP hydrolysis cycle initiates nucleotide-dependent rotation of myosin motor domain, or that of its site for dye binding as well as the change in myosin head mobility. Caldesmon drives ATP hydrolysis cycle by shifting the equilibrium between strong and weak forms of actin-myosin binding.  相似文献   

12.
Beef heart mitochondrial F1 contains a total of six adenine nucleotide-binding sites including at least two different types of sites. Three "exchangeable" sites exchange rapidly during hydrolysis of MgATP, whereas three "nonexchangeable" sites do not (Cross, R. L. and Nalin, C. M. (1982) J. Biol. Chem. 257, 2874-2881). When F1 that has been stored as a suspension in (NH4)2SO4/ATP/EDTA/sucrose/Tris, pH 8.0, is pelleted, rinsed with (NH4)2SO4, dissolved, and desalted, it retains three bound adenine nucleotides. We find that two of these endogenous nucleotides are bound at nonexchangeable sites and one at an exchangeable site. The vacant nonexchangeable site is highly specific for adenine nucleotide and is rapidly filled by ADP upon addition of ADP or during ATP hydrolysis. ADP bound at this site can be removed by reprecipitating the enzyme with (NH4)2SO4. The single nucleotide retained by desalted F1 at an exchangeable site is displaced during hydrolysis of ATP, GTP, or ITP. The binding of PPi at two sites on the enzyme also promotes its dissociation. Neither procedure affects retention of nucleotide at the nonexchangeable sites. These observations, combined with the finding that PPi is much more easily removed from exchangeable sites than ADP, have led to the development of a procedure for preparing F1 with uniform and well-defined nucleotide site occupancy. This involves sequential exposure to MgATP, PPi, and high concentrations of Pi. Unbound ligand is removed between each step. The resulting enzyme, F1[3,0], has three occupied nonexchangeable sites and three vacant exchangeable sites. Evidence that nonexchangeable and exchangeable sites represent noncatalytic and catalytic sites, respectively, suggest that this form of the enzyme will prove useful in numerous applications, including transient kinetic measurements and affinity labeling of active site residues.  相似文献   

13.
Inactivation of the isolated ATPase portion of ATP synthase from beef-heart mitochondria (F1) by its natural inhibitor protein (IP) during steady-state ATP hydrolysis is accompanied by a trapping of 1 mol nucleotide/mol F1 in one of the catalytic sites. The trapped nucleotide is not released during incubation of IP-inhibited F1 in the presence of MgATP at pH 8.0 for at least 20 min, indicating a very low turnover rate of the IP.F1 complex. The ATP/ADP ratio of the trapped nucleotides is higher than that found for transitorily bound nucleotides under the same conditions but in the absence of IP. The IP impairs the acceleration of ATP hydrolysis and product release steps that results from the binding of ATP to an alternate catalytic site. It also inhibits ATP hydrolysis by a single catalytic site or shifts the equilibrium toward ATP formation from bound ADP and Pi. At high pH, an active acidic form of the free IP is transformed to the inactive basic one with a half-time of 3-4 s. This process seems to be prevented by IP binding to F1. The inactive basic form of IP does not compete with the active acidic IP for the binding to F1. The data do not favor the existence of a long-lived catalytically active IP.F1 intermediate during IP action on F1. The reactivation of IP-inhibited membrane-bound F1 by energization may be due to a conformational change in the IP.F1 complex allowing the transformation of IP into an inactive basic state that rapidly dissociates.  相似文献   

14.
Luit Slooten  Adriaan Nuyten 《BBA》1981,638(2):313-326
(1) Light-activated ‘dark’ ATPase in Rhodospirillum rubrum chromatophores is inhibited by preincubation with ADP or ATP (in the absence of Mg2+). I50 values were 0.5 and 6 μM, respectively, after 20 s of preincubation. (2) In the absence of MgATP, the rate constant for dissociation of ADP or ATP from the inhibitory site was less than 0.2 min?1 in deenergized membranes. Illumination in the absence of MgATP caused an increase of over 60-fold in both rate constants. (3) In some experiments hydrolysis was performed in the presence of 10 μM Mg2+ and 0.2 mM MgATP. Under these conditions, the ADP or ATP inhibition was reversed within about 20 or about 80 s, respectively, after the onset of hydrolysis. This suggests that recovery from ADP or ATP inhibition (i.e., release of tightly bound ADP or ATP) in the dark is induced by MgATP binding to a second nucleotide-binding site on the enzyme. (4) Results obtained with variable concentrations of uncoupler suggest that in the absence of bound Mg2+ (see below), MgATP-induced release of tightly bound ADP or ATP does not require a transmembrane Δ\?gmH+. This, together with the inhibitor/substrate ratios prevalent during hydrolysis, suggests that these reactivation reactions involve MgATP binding to a high-affinity binding site (Kd < 2 μM). (5) At high concentrations of uncoupler, a time-dependent inhibition of hydrolysis occurred in the control chromatophores as well as in the nucleotide-pretreated chromatophores. This deactivation was dependent on Mg2+. In addition, MgATP-dependent reversal of ADP inhibition in the dark was inhibited by Mg2+ at concentrations above 20–30 μM. By contrast, MgATP-dependent reversal of ADP inhibition occurs within 3–4 s, despite the presence of high concentrations of Mg2+ if the chromatophores are illuminated during contact with the nucleotides. Uncoupler abolishes the effect of illumination. A reaction scheme incorporating these findings is proposed. (6) The implications of these findings for the mechanism of lightactivation of ATP hydrolysis (Slooten, L. and Nuyten, A., (1981) Biochim. Biophys. Acta 638, 305–312) are discussed.  相似文献   

15.
Xie L  Li WX  Rhodes T  White H  Schoenberg M 《Biochemistry》1999,38(18):5925-5931
Alkylation of myosin's Cys-707 (SH1) and Cys-697 (SH2) has profound consequences for myosin's ability to interact with actin and hydrolyze MgATP. Pre-steady-state measurements of myosin-S1 alkylated at SH1 and SH2 by N-phenylmaleimide (NPM) in the presence of ATP were taken to identify the steps of the reaction that are altered. It was found that the rate constant most affected by this modification is the apparent rate of the ATP hydrolysis step. This rate constant is reduced 20000-fold, an effect comparable in magnitude to the effect of the same modification on the binding of MgATP to S1 or acto-S1 [Xie, L., and Schoenberg, M. (1998) Biochemistry 37, 8048]. In contrast, the rate constants of phosphate release and dissociation of acto-S1 by ATP were reduced <20-fold. For unmodified S1, the enhancement of fluorescence seen after addition of ATP had the same rate constant as the ATP hydrolysis step (S1.ATP if S1.ADP.Pi) measured by single-turnover experiments in a quench-flow experiment. This is consistent with results previously observed [Johnson, K. A., and Taylor, E. W. (1978) Biochemistry 17, 3432]. However, NPM-modified S1 exhibited virtually no fluorescence enhancement upon ATP binding. This provides further evidence that M.ATP is the predominant intermediate of NPM-S1-catalyzed ATP hydrolysis.  相似文献   

16.
Glycerol-extracted rabbit psoas fibres were incubated at temperatures between -35 degrees C and +10 degrees C in a low-ionic-strength relaxing solution containing 50% ethyleneglycol, 100 microM [3H]MgATP, 1 mM [14C]mannitol and less than 0.01 microM Ca2+. The fibres were then rinsed in a solution containing 1 mM ATP and the bound nucleotide eluted in trichloroacetic acid; all these operations were carried out at the cold temperature. Residual bound nucleotide was eluted with trichloroacetic acid at room temperature. The fibres were found to bind approximately 180 microM nucleotide, which is consistent with binding to the enzymatic site of myosin. The eluate, obtained in the cold, was analysed on poly(ethyleneimine)-cellulose for its ATP and ADP content. At temperatures down to -22 degrees C most of the bound nucleotide was ADP and there was little variation of this fraction with temperature. As the temperature was lowered below -22 degrees C the ATP fraction rose sharply; by -35 degrees C it predominated. These results are similar in type to those found by Biosca et al. [(1984) Biochemistry 23, 1947-1953] on isolated subfragment 1, but are displaced to a much lower temperature range. Thus in a muscle fibre only a low thermal energy is needed for myosin to hold its nucleotide in a constant balance between ATP and ADP.  相似文献   

17.
B Mitra  G G Hammes 《Biochemistry》1988,27(1):245-250
The delta- and epsilon-polypeptides were removed from chloroplast coupling factor 1 (CF1). The resulting enzyme, CF1(-delta, epsilon), is a stable active ATPase containing only alpha-, beta-, and gamma-polypeptides. The dependence of the steady-state kinetics of ATP hydrolysis catalyzed by CF1(-delta, epsilon) on the concentrations of ATP and ADP was found to be essentially the same as by activated CF1. Nucleotide binding studies with CF1(-delta, epsilon) revealed three binding sites: a nondissociable ADP site (site 1), a tight MgATP binding site (site 2), and a site that binds ADP and ATP with a dissociation constant in the micromolar range (site 3). Similar results have been obtained with CF1. For both CF1 and CF1(-delta, epsilon), the binding of MgATP at site 2 is tight only in the presence of Mg2+. Fluorescence resonance energy transfer was used to map distances between the gamma-sulfhydryl ("dark" site) and gamma-disulfide and between the gamma-sulfhydryl and the three nucleotide sites. These distances are within 5% of the corresponding distances on CF1. These results indicate that removal of the delta- and epsilon-polypeptides from CF1 does not cause significant changes in the structure, kinetics, and nucleotide binding sites of the enzyme.  相似文献   

18.
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.  相似文献   

19.
Although the binding of nucleotides at the noncatalytic sites of F1-ATPase has been regarded as probably having some type of regulatory function, only limited observations have been reported that support such a role. We present here results showing that the presence of ATP at noncatalytic sites can give a fivefold enhancement of the rate of GTP hydrolysis by the chloroplast F1-ATPase. Heat-activation of the chloroplast F1-ATPase in the presence of ATP, followed by column separation from the medium nucleotides gives an enzyme with two of the three noncatalytic sites filled with ATP. In contrast, heat-activation in the presence of ADP gives an enzyme with only one noncatalytic site filled with ADP. Such an enzyme with two noncatalytic sites empty catalyzes MgGTP hydrolysis only very slowly. The filling of a second noncatalytic site with ATP by exposure of the enzyme to ATP without Mg2+ present, followed by column separation, markedly increases the rate of GTP hydrolysis. A further increase occurs when a third noncatalytic site is filled by exposure to Mg2+ and ATP. The rate of MgATP hydrolysis is the same for the enzyme heat-activated in the presence of ATP or ADP, probably because MgATP, unlike MgGTP, rapidly binds to both catalytic and noncatalytic sites.  相似文献   

20.
Previously we have shown that beef heart mitochondrial F1 contains a total of six adenine nucleotide binding sites. Three "catalytic" sites exchange bound ligand rapidly during hydrolysis of MgATP, whereas three "noncatalytic" sites do not. The noncatalytic sites behave asymmetrically in that a single site releases bound ligand upon precipitation of F1 with ammonium sulfate. In the present study, we find this same site to be the only noncatalytic site that undergoes rapid exchange of bound ligand when F1 is incubated in the presence of EDTA at pH 8.0. Following 1000 catalytic turnovers/F1, the site retains the unique capacity for EDTA-induced exchange, indicating that the asymmetric determinants are permanent and that the three noncatalytic sites on soluble F1 do not pass through equivalent states during catalysis. Measurements of the rate of ligand binding at the unique noncatalytic site show that uncomplexed nucleotide binds preferentially. At pH 7.5, in the presence of Mg2+, the rate constant for ADP binding is 9 X 10(3) M-1 s-1 and for dissociation is 4 X 10(-4) s-1 to give a Kd = 50 nM. The rate of dissociation is 10 times faster in the presence of EDTA or during MgATP hydrolysis, and it increases rapidly at pH below 7. EDTA-induced exchange is inhibited by Mg2+, Mn2+, Co2+, and Zn2+ but not by Ca2+ and is unaffected by dicyclohexylcarbodiimide modification. The unique noncatalytic site binds 2-azido-ADP. Photolysis results in the labeling of the beta subunit. Photolabeling of a single high-affinity catalytic site under conditions for uni-site catalysis also results in the labeling of beta, but a different pattern of labeled peptides is obtained in proteolytic digests. The results demonstrate the presence of two different nucleotide binding domains on the beta subunit of mitochondrial F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号