首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrant glycosylation of proteins is a hallmark of tumorigenesis and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is noninvasive and technically straightforward, and the sample collection and storage is relatively easy. Although differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimized a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analyzed with liquid chromatography–tandem mass spectrometry (LC–MS/MS) to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.  相似文献   

2.
Lectins are ubiquitous proteins of nonimmune origin, present in plants, microorganisms, animals and humans which specifically bind defined monosugars or oligosaccharide structures. Great progress has been made in recent years in understanding crucial roles played by lectins in many biological processes. Elucidation of carbohydrate specificity of human and animal lectins is of great importance for better understanding of these processes. Long before the role of carbohydrate–protein interactions had been explored, many lectins, mostly of plant origin, were identified, characterized and applied as useful tools in studying glycoconjugates. This review focuses on the specificity-based lectin classification and the methods of measuring lectin–carbohydrate interactions, which are used for determination of lectin specificity or for identification and characterization of glycoconjugates with lectins of known specificity. The most frequently used quantitative methods are shortly reviewed and the methods elaborated and used in our laboratories, based on biotinylated lectins, are described. These include the microtiter plate enzyme-linked lectinosorbent assay, lectinoblotting and lectin–glycosphingolipid interaction on thin-layer plates. Some chemical modifications of lectin ligands on the microtiter plates and blots (desialylation, Smith degradation, β-elimination), which extend the applicability of these methods, are also described.  相似文献   

3.
The glycome represents the total set of glycans expressed in a cell. The glycome has been assumed to vary between cell types, stages of development and differentiation, and during malignant transformation. Analysis of the glycome provides a basis for understanding the functions of glycans in these cellular processes. Recently, a technique called lectin microarray was developed for rapid profiling of glycosylation, although its use was mainly restricted to glycoproteins of cell lysates, and thus unable to profile the intact cell surface glycans. Here we report a simple and sensitive procedure based on this technology for direct analysis of the live mammalian cell-surface glycome. Fluorescent-labeled live cells were applied in situ to the established lectin microarray consisting of 43 immobilized lectins with distinctive binding specificities. After washing, bound cells were directly detected by an evanescent-field fluorescence scanner in a liquid phase without fixing and permeabilization. The results obtained by differential profiling of CHO and its glycosylation-defective mutant cells, and splenocytes of wild-type and beta1-3-N-acetylglucosaminyltransferase II knockout mice performed as model experiments agreed well with their glycosylation phenotypes. We also compared cell surface glycans of K562 cells before and after differentiation and found a significant increase in the expression of O-glycans on differentiated cells. These results demonstrate that the technique provides a novel strategy for profiling global changes of the mammalian cell surface glycome.  相似文献   

4.
Post-translational modifications such as glycosylation are important for changing the properties and functions of proteins. To analyze the importance of glycosylation during cold stress in rice, a proteomics approach was used. Proteins extracted from the basal part of rice leaf sheaths were separated by two-dimensional polyacrylamide gel electrophoresis, and subjected to lectin blot analysis using concanavalin A. From a total of 250 detected proteins, 22 reacted with the lectin, suggesting that they were N-glycosylated proteins. To determine how N-glycosylation of these proteins is affected by cold stress, rice seedlings were incubated at 5°C for 48 h, and proteins extracted from the basal parts of leaf sheaths were analyzed by the lectin blot assay. Cold stress changed the reactivity toward the lectin for 12 of the 22 glycoproteins. The identity of the 12 proteins was determined by protein sequencing and mass spectrometry with the majority of these glycoproteins being categorized as involved in energy production. Furthermore, calreticulin, one of the 12 glycoproteins, was also phosphorylated as a result of cold stress. These results indicate that cold stress of the basal parts of rice leaf sheaths changes the glycosylation and phosphorylation profiles of calreticulin, a key protein that regulates the quality control of other proteins.  相似文献   

5.
History of lectins: from hemagglutinins to biological recognition molecules   总被引:22,自引:0,他引:22  
Sharon N  Lis H 《Glycobiology》2004,14(11):53R-62R
The occurrence in nature of erythrocyte-agglutinating proteins has been known since the turn of the 19th century. By the 1960s it became apparent that such proteins also agglutinate other types of cells, and that many of them are sugar-specific. These cell-agglutinating and sugar-specific proteins have been named lectins. Although shown to occur widely in plants and to some extent also in invertebrates, very few lectins had been isolated until the early 1970s, and they had attracted little attention. This attitude changed with the demonstration that lectins are extremely useful tools for the investigation of carbohydrates on cell surfaces, in particular of the changes that the latter undergo in malignancy, as well as for the isolation and characterization of glycoproteins. In subsequent years numerous lectins have been isolated from plants as well as from microorganisms and animals, and during the past two decades the structures of hundreds of them have been established. Concurrently, it was shown that lectins function as recognition molecules in cell-molecule and cell-cell interactions in a variety of biological systems. Here we present a brief account of 100-plus years of lectin research and show how these proteins have become the focus of intense interest for biologists and in particular for the glycobiologists among them.  相似文献   

6.
Glycosylated structures on the cell surface have a role in cell adhesion, migration, and proliferation. Repair of the airway epithelium after injury requires each of these processes, but the expression of cell surface glycosylation of airway epithelial cells after injury is not known. We examined cell surface glycosylation using lectin-binding profiles of normal and repairing epithelia in Hartley guinea pigs from 0 to 14 days after mechanical injury. The epithelium regenerated completely over 7 days. In normal trachea, galactose- or galactosamine-specific lectins (14 of 20 tested) labelled epithelial cells, but fucose, mannose, and other sugar-specific lectins (15 tested) did not. GSA-2, a glucosamine-specific lectin, labelled epithelial cells weakly in uninjured tracheas, but intense labelling was noted in basal and non-ciliated columnar cells adjacent to the injury site over 3h to 14 days after injury. Labelling of these cells peaked at 12h and 5 days after injury respectively. Similar patterns were seen with lectins AlloA and HAA but not with CPA during repair. The binding of the lectin DSA to proteins collected from primary cultures of airway epithelial cells decreased substantially after treatment for 24h with either transforming growth factor- or interleukin-1, but that of the CPA lectin did not. We demonstrate changes in glycosylation profiles of airway epithelial cells coordinate with repair after mechanical injury. These changes may be useful to study mechanisms by which repair is regulated.  相似文献   

7.
Lectins have been used in glycoprotein purification, oligosaccharide analysis, and in cell‐selection processes. Here, we utilize lectins in a rational attempt to select a subpopulation of insect cells (Estigmene acrea, EAA) with more complete glycosylation capacity by selecting cells that display more complex‐type cell‐surface oligosaccharides than the general population of cells. A lectin (ECA) from Erythrina cristagalli, specific for galactose β(1‐4)N‐acetylglucosamine, was found to be useful in recognizing a small subpopulation of Sf‐21 and EAA cells. Cell selections were performed by lectin affinity chromatography and by selective agglutination. Analysis by lectin blots of cell lysates and a quantitative agglutination assay did not reveal significant differences in regard to the level of complex glycosylation between the negatively and positively selected subpopulations of EAA cells. Statistically significant differences in binding the fluorescently labeled lectin, ECA‐TRITC were observed even 30 passages post‐selection between EAA subpopulations that were negatively and positively selected by lectin affinity chromatography. There were no differences in the two subpopulations in the ECA quantitative agglutination assay. Thus, the hypothesis that a subpopulation differing in glycosylation capacity exists and that such a subpopulation can be identified by the character of cell‐surface oligosaccharides is plausible. However, these differences appear to be too small to be of practical use. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 616–619, 1999.  相似文献   

8.
9.
Bovine binucleate trophoblast giant cells (BNCs) produce large amounts of PAS-positive cytoplasmic granules. After fusion of BNCs with uterine epithelial cells, the contents of these granules are released into the maternal stroma which underlies the uterine epithelium. Histochemically, the granules can be labeled with N-acetylgalactosamine-specific lectins ( Dolichos biflorus, Vicia villosa, and Wisteria floribunda agglutinins) and with Phaseolus vulgaris leucoagglutinin. In this study, we used lectin western blot analysis of proteins from fetal cotyledons to characterize the lectin binding glycoproteins. Lectin western blots showed several bands. A main band of approximately 65 kDa was identified as pregnancy-associated glycoproteins (PAGs) and a double band at 34-35 kDa as prolactin-related protein-I (PRP-I) by their crossreactivity with specific antisera. Enzymatic cleavage of N-linked glycans with peptide- N-glycanase F abolished the lectin binding to PRP and PAGs in western blots, revealing that the lectins bound to asparagine-linked glycans. The high specificity of the lectins was used for the enrichment of PRP-I and PAGs from placental cotyledons with Vicia villosa lectin affinity chromatography. The occurrence of the relatively uncommon asparagine-linked N-acetylgalactosaminyl glycans on secretory proteins of the BNCs suggests a functional role of this specific glycosylation pattern.  相似文献   

10.
Separation technologies for glycomics   总被引:9,自引:0,他引:9  
Progress in genome projects has provided us with fundamentals on genetic information; however, the functions of a large number of genes remain to be elucidated. To understand the in vivo functions of eukaryotic genes, it is essential to grasp the features of their post-translational modifications. Among them, protein glycosylation is a central issue to be discussed, considering the predominant roles of glycoproteins in cell-cell and cell-substratum recognition events in multicellular organisms. In this context, it is necessary to establish a core strategy for analyzing glycosylated proteins under the concept of the "glycome" [Trends Glycosci. Glycotechnol. 12 (2000) 1]. Though the term glycome should be defined, in analogy to the genome and proteome, as "a whole set of glycans produced in a single organism", here we propose a glycome project specifically focusing on glycoproteins. Principal objectives in the project are to identify: (1) which genes encode glycoproteins (i.e. genome information); (2) which sites among potential glycosylation sites are actually glycosylated (i.e. glycosylation site information); (3) what are the structures of glycans (i.e. structural information); and (4) what are the effects (functions) of glycosylation (functional information). For these purposes, two affinity technologies have been introduced. One is named the "glyco-catch method" to identify genes encoding glycoproteins [Proteomics 1 (2001) 295], and the other is the recently reinforced "frontal affinity chromatography" [J. Chromatogr. A 890 (2000) 261]. By the former method, genes that encode glycoproteins as well as glycosylation sites are systematically identified by the efficient combination of conventional lectin-affinity chromatography and contemporary in silico database searching. The following three actions have been devised for rapid and systematic characterization of glycans: (1) mass spectrometry to acquire exact mass information; (2) 2-D/3-D mapping to obtain refined chemical information; and (3) reinforced frontal affinity chromatography to determine affinity constants (K(a)-values) for a set of lectins. Pyridylaminated glycans are used throughout the characterization processes. In this review, the concept and strategy of glycomic approaches are described referring to the on-going glycome project focused on the nematode Caenorhabditis elegans.  相似文献   

11.
建立对体液细胞进行自动捕获的凝集素芯片体系,利用凝集素对糖链的特异亲和作用捕获细胞,提取白血病患者外周血、肺癌胸水和肝腹水中细胞进行荧光标记,凝集素芯片捕获,激光扫描仪检测捕获细胞的荧光信号,常规HE染色后光学显微镜下观察细胞的形态并进行免疫化学反应,流式细胞仪验证凝集素芯片的特异性.结果表明:凝集素芯片可以对体液中的癌细胞进行自动捕获,对癌细胞膜表面糖链进行识别.芯片检测的细胞浓度最少可达每mL10^4个左右.芯片有较好的重复性和特异性.这种凝集素芯片可用于临床体液中癌细胞的检测分析,对癌细胞膜表面凝集素亲和位点进行即时、高通量的检测,为了解细胞膜表面聚糖在癌变过程中的变化提供了一个技术平台.  相似文献   

12.
Methods to detect "native" proteins immobilized on nitrocellulose membranes in spot tests or on blots prepared from polyacrylamide slab gels after electrophoretic separation are described. Gold sols were found to be useful as general stains for proteins: They are polychromatic, yield an indelible record, and are complementary to india ink as protein stains because these two stains have different sensitivities for a number of proteins tested. For detection of wheat germ lectin (WGL)-binding glycoproteins, avidin-peroxidase was an effective enzyme probe, because the glycoportion of the avidin moiety possesses binding affinity to WGL. Glycocomponents in human parotid saliva were detected with this probe and with the following biotin-conjugated lectins as intermediary probes: soybean lectin, Bandeiraea simplicifolia lectin, Lotus tetragonolobus lectin, and kidney bean lectin. Autoclaving blots prior to probing eliminated endogenous peroxidase activity. Concanavalin A and WGL were separated by isoelectric focusing and detected on blots with horseradish peroxidase and avidin-peroxidase, respectively. The versatility of the biotin/avidin system was used to detect other lectins on similar blots using biotin-conjugated glycoproteins as intermediary probes: Helix pomatia lectin and B. simplicifolia lectin were detected with biotinyl neoglycoproteins, and kidney bean lectin with biotin-conjugated components of parotid saliva.  相似文献   

13.
Altered protein glycosylation compared with the disease-free state is a universal feature of cancer cells. It has long been established that distinct glycan structures are associated with specific forms of cancer, but far less is known about the complete array of glycans associated with certain tumors. The cancer glycome has great potential as a source of biomarkers, but progress in this field has been hindered by a lack of available techniques for the elucidation of disease-associated glycosylation. In the present study, lectin microarrays consisting of 45 lectins with different binding preferences covering N- and O-linked glycans were coupled with evanescent-field activated fluorescent detection in the glycomic analysis of primary breast tumors and the serum and urine of patients with metastatic breast cancer. A single 50 μm section of a primary breast tumor or <1 μL of breast cancer patient serum or urine was sufficient to detect glycosylation alterations associated with metastatic breast cancer, as inferred from lectin-binding patterns. The high-throughput, sensitive and relatively simple nature of the simultaneous analysis of N- and O-linked glycosylation following minimal sample preparation and without the need for protein deglycosylation makes the lectin microarray analysis described a valuable tool for discovery phase glycomic profiling.  相似文献   

14.
Lectins were isolated from fruits and leaves of Clerodendron trichotomum by affinity chromatography on lactamyl-Sepharose. The purified lectins (C. trichotomum agglutinin: CTA) were homogeneous on SDS/polyacrylamide gel electrophoresis, and the carbohydrate moiety was characterized by physicochemical and immunochemical methods. The asparagine-linked oligosaccharides were released by treatment with N-oligosaccharide glycopeptidase (almond, EC 3.5.1.52) of peptic glycopeptides obtained from fruit CTA, and separated by gel filtration and thin-layer chromatography. The structure of the predominant oligosaccharide was determined as Xyl beta 1----2 (Man alpha 1----6)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----3)GlcNAc by high-performance liquid chromatography, sugar analysis and 1H-NMR spectroscopy. The reactivity of the carbohydrate moiety of CTA toward various lectins was studied. Fruit and leaf CTAs were applied to polyacrylamide gel electrophoresis, transferred to nitrocellulose sheets and detected with horseradish-peroxidase-conjugated lectins. Concanavalin A, lentil lectin, pea lectin, Vicia faba lectin and Ulex europeus agglutinin I, but not wheat germ lectin, bound to fruit CTA. The results indicate new binding properties of these plant lectins: a beta-xylosyl residue substituted at C-2 of the beta-mannosyl residue of N-linked oligosaccharide does not affect the binding with mannose-specific lectins, lentil, pea and Vicia faba lectins can bind to N-linked oligosaccharides containing an alpha-L-fucosyl residue attached to C-3 of the asparagine-linked N-acetyl-D-glucosamine residue, and Ulex europeus agglutinin I can bind to the (alpha 1----3)-linked fucose residue of the N-linked oligosaccharide.  相似文献   

15.
Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheatgerm agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(beta 1-3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosaccharide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

16.
Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and α2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.  相似文献   

17.
Distribution of lectin-binding sites in rat submandibular and sublingual salivary glands during postnatal development has been investigated. Lectin preparations include con A, lentin lectin, castor beans agglutinin, peanut, soybean and Sophora japonica agglutinins, wheat germ agglutinin and lectin from the bark of Laburnum anagyroides. The direct and indirect peroxidase techniques are used. According to the similarities of histochemical patterns, all lectins are divided into four groups. Besides the general patterns of lectin binding sites, some details are noted. Lectins of peanut and Sophora japonica possess an extremely high affinity to mast cells, con A, lens lectin, castor beans and wheat germ agglutinins--to serous demilunes cells. Laburnum lectin--to salivary ducts epithelia in adult rat salivary glands. Lentin lectin, con A and Laburnum lectin preferentially stain cells with specific granularity in granular ducts at early stages of postnatal development. Considering the character of staining, we propose for further histochemical investigations of the salivary glands lentin lectin, peanut agglutinin, wheat germ agglutinin and Laburum anagyroides lectin.  相似文献   

18.
The mechanism of interaction of lectins with IgG molecules by the method of the lectin-enzyme assay has been described that allows to register a degree of human serum IgG molecules' glycosylation (mannosylation in case of lectin of Pisum sativum) in norm and at pathology. To detect an authentic difference in a glycosylation degree between control and pathological IgG, the wells of an ELISA plate were coated with an antibody in concentration of 1 microg/ml. Introducing alpha-D-mannose between the stages of incubation of immunoglobulin and lectin showed, that alpha-D-mannose inhibits the affinity of lectins for IgG. The preliminary incubation of lectin with IgG molecules stabilizes the activity of horseradish peroxidase, which labeled the lectins. Lectin-enzyme assay, in which Fab and Fc fragments of IgG were used, showed that lectin of Pisum sativum possesses a higher affinity for Fab regions. These findings and the glycosylation analysis of paraproteins and Bence-Jones proteins of multiple myeloma patients help to understand the details of interaction of immunoglobulins and lectins.  相似文献   

19.
1. The microheterogeneous alpha molecules of class II antigen, DR molecules obtained from human B cell line and I-A molecules from mouse B cell hybridoma cell line, were separated by 2-D PAGE, transferred onto NC sheets and N-linked oligosaccharide types were analyzed by staining with P.O./lectins. 2. This is the first report to show directly the type of oligosaccharide chain corresponding to each spot separated by 2-D PAGE. The glycosylation patterns of class II alpha chains in human and mouse were compared.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号