首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar H+-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V1 sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO3-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H+ secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO3-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.  相似文献   

2.
Mechanisms of acid release and intracellular pH (pHi) homeostasis were analysed in goldfish (Carassius auratus) gill cells in primary culture. The rate of acid secretion was measured using a cytosensor microphysiometer, and pHi was determined using the fluorescent probe 2,7-bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein (BCPCF). Amiloride, a Na+ channel and Na+/H+ exchanger (NHE) inhibitor, had no effect on pHi, but acid secretion of the gill cells was significantly impaired. In the presence of amiloride, the intracellular acidification (achieved using the NH4Cl pulse technique) was more severe than in the absence of amiloride, and recovery from the acidosis was slowed down. Accordingly, acid secretion of gill cells was severely reduced in the absence of extracellular Na+. Under steady-state conditions, 4,4-diisothiocyanatodihydro-stilbene-2,2-disulfonic acid (DIDS), a HCO3-transport inhibitor, caused a slow acidification of pHi, and acid secretion was significantly reduced. No recovery from intracellular acidification was observed in the presence of DIDS. Bafilomycin A1, an inhibitor of V-ATPase, had no effect on steady-state pHi and recovery from an intracellular acidification, whereas the rate of acid secretion under steady-state conditions was slightly reduced. Immunohistochemistry clearly revealed the presence of the V-ATPase B-subunit in goldfish gill lamellae. Taken together, these results suggest that a Na+-dependent HCO3 transport is the dominant mechanism besides an NHE and V-ATPase to control pHi in goldfish gill cells.Communicated by G. Heldmaier  相似文献   

3.
The cholangiocytes lining the intrahepatic bile ducts modify the primary secretion from the hepatocytes. The cholangiocytes secrete HCO3 into bile when stimulated with secretin in many species, including man. However, in rats, secretin stimulation neither affects biliary HCO3 concentration nor bile flow, whereas following bile duct ligation (BDL) it induces hypercholeresis with significant increase of NaHCO3 concentration. We hypothesized that BDL might affect the expression of cholangiocyte H+ transporters and thereby choleresis, and determined the expression and localization of the 31 kDa vacuolar type H+-ATPase (V-ATPase) subunit and of Na+/H+ exchanger NHE3 in the livers of control and BDL rats by real-time PCR, in situ hybridization, immunoblotting, and immunohistochemistry. In controls, secretin had no effect on bile flow, whereas following BDL, secretin increased bile flow ∼threefold. V-ATPase and NHE3 were expressed in control cholangiocytes showing intracellular and apical distribution, respectively. BDL significantly up-regulated V-ATPase mRNA and protein expression and was associated with redistribution to the apical pole in ∼60% of the cholangiocytes lining the small bile ductules. In contrast, NHE3 expression was significantly down-regulated by BDL at the mRNA and protein level. The data demonstrate expression of V-ATPase in rat cholangiocytes. BDL-induced down-regulation of NHE3 may contribute to a reduction of Na+ and HCO3 reabsorption and thus to their net secretion into bile. Apical localization of V-ATPase in cholangiocytes may indicate its involvement in pH regulation and/or HCO3 salvage to compensate for NHE3 down-regulation in BDL.  相似文献   

4.
Summary The coprodaeum of the domestic hen maintained on a low-NaCl diet adapts by enhanced sodium transport. This study examines the adaptive response at the single cell and whole organ levels. Surface areas of apical (microvillous) and basolateral plasma membranes of columnar absorptive epithelial cells were estimated by use of ultrastructural stereology. The activities of succinic dehydrogenase (a mitochondrial enzyme) and ouabain-sensitive, potassium-dependent paranitrophenyl phosphatase (a sodium pump enzyme) were determined in tissue homogenates. Sodium, potassium-ATPase (pump enzyme) activity in cell membranes was localized by ultrastructural cytochemistry. Apical and basolateral membranes responded differently. In high-NaCl hens, the membrane signature of the average cell was 32 m2 (apical), 932 m2 (lateral) and 17 m2 (basal). Cells from low-NaCl hens had more apical membrane (49 m2 per cell) but essentially the same area of basolateral membrane. However, total surfaces per organ were greater for all membranes. Sodium pump enzymes were localized in basolateral membranes. Enzyme activities per unit mitochondrial volume and per unit basolateral membrane surface were higher in low-NaCl birds. These findings are discussed in the context of known mechanisms of transcellular sodium transport via apical ion channels and basolateral pumps.  相似文献   

5.
6.

Background

Vacuolar (H+)-ATPase (V-ATPase; V1Vo-ATPase) is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V1-ATPase - Vo-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains.

Methodology/Principal Findings

To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit.

Conclusions

The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.  相似文献   

7.
8.
Cell membrane water permeability of rabbit cortical collecting duct   总被引:15,自引:0,他引:15  
Summary The water permeability (P osm) of the cell membranes of isolated perfused rabbit cortical collecting ducts was measured by quantitative light microscopy. Water permeability of the basolateral membrane, corrected for surface area, was 66 m·sec–1 for principal cells and 62.3 m·sec–1 for intercalated cells. Apical membraneP osm values corrected for surface area, were 19.2 and 25 m·sec–1 for principal and intercalated cells, respectively, in the absence of antidiuretic hormone (ADH). Principal and intercalated cells both responded to ADH by increasingP osm of their apical membranes to 92.2 and 86.2 ·sec–1 respectively. The ratio of the total basolateral cell membrane osmotic water permeability to that of the apical cell membrane was 271 in the absence of ADH and 71 in the presence of the hormone for both cell types. This asymmetry in water permeability is most likely due to the fact that basolateral membrane surface area is at least 7 to 8 times greater than that of the apical membrane. Both cell types exhibited volume regulatory decrease when exposed to dilute serosal bathing solutions. Upon exposure to a hyperosmotic serosal bath (390 mosm), pricipal cells did not volume regulate while two physiologically distinct groups of intercalated cells were observed. One group of intercalated cells failed to volume regulate; the second group showed almost complete volume regulatory increase behavior.  相似文献   

9.
Summary Nerve growth factor (NGF) was localized in the mouse submandibular gland by means of indirect immunofluorescence applied to 0.5 mthick sections of freeze-dried, plastic-embedded tissue. The antibody to NGF (IgG-fraction) was raised in rabbits immunized with pure 2.5 S NGF from submandibular glands of adult male mice.In the male gland anti-NGF bound selectively to the secretory granules was present in the cells of the granular ducts. Immunoreactive granules extended from the perinuclear region toward the apical pole. In the female gland immunoreactive cells and granules were considerably less abundant than in males. Immunofluorescence was confined to individual secretory cells located in the wall of the granular striated duct.In the present study no support was found for the hypothesis suggesting that immunoreactive NGF is formed within the secretory granules during their transport from the perinuclear region to the apical pole.  相似文献   

10.

Background

V-ATPase interactions with cholesterol enriched membrane microdomains have been related to metastasis in a variety of cancers, but the underlying mechanism remains at its beginnings. It has recently been reported that the inhibition of this H+ pump affects cholesterol mobilization to the plasma membrane.

Methods

Inhibition of melanoma cell migration and invasiveness was assessed by wound healing and Transwell assays in murine cell lines (B16F10 and Melan-A). V-ATPase activity was measured in vitro by ATP hydrolysis and H+ transport in membrane vesicles, and intact cell H+ fluxes were measured by using a non-invasive Scanning Ion-selective Electrode Technique (SIET).

Results

Cholesterol depletion by 5 mM MβCD was found to be inhibitory to the hydrolytic and H+ pumping activities of the V-ATPase of melanoma cell lines, as well as to the migration and invasiveness capacities of these cells. Nearly the same effects were obtained using concanamycin A, a specific inhibitor of V-ATPase, which also promoted a decrease of the H+ efflux in live cells at the same extent of MβCD.

Conclusions

We found that cholesterol depletion significantly affects the V-ATPase activity and the initial metastatic processes following a profile similar to those observed in the presence of the V-ATPase specific inhibitor, concanamycin.

General significance

The results shed new light on the functional role of the interactions between V-ATPases and cholesterol-enriched microdomains of cell membranes that contribute with malignant phenotypes in melanoma.  相似文献   

11.
Summary The effects of the calmodulin blocker, trifluoperazine (TEP), on membrane-bound Ca++ -ATPase, Na+ -K+ -ATPase (EC 3.6.1.3.) and the ultrastructure of the enamel organ were investigated in the lower incisors of normal and TFP-injected rats. The rats, of about 100 g body weight, were given either 0.2 ml physiological saline or 100 g TFP dissolved in 0.2 ml physiological saline through a jugular vein and fixed by transcardiac perfusion with a formaldehyde-glutaraldehyde mixture at 1 and 2 h after TFP administration. Non-decalcified sections of the enamel organ less than 50 m in thickness, prepared from dissected lower incisors, were processed for the ultracytochemical demonstration of Ca++-ATPase and Na+-K+ -ATPase by the one-step lead method at alkaline pH. In control saline-injected animals the most intense enzymatic reaction of Ca++-ATPase was demonstrated along the plasma membranes of the entire cell surfaces of secretory ameloblasts. Moderate enzymatic reaction was also observed in the plasma membranes of the cells of stratum intermedium and papillary layer. Reaction precipitates of Na+-K+-ATPase activity were localized clearly along the plasma membranes of only the cells of stratum intermedium and papillary layer. The most drastic effect of TFP was a marked disappearance of enzymatic reaction of Ca++-ATPase from the plasma membranes of secretory ameloblasts, except for a weak persistent reaction in the basolateral cell surfaces of the infranuclear region facing the stratum intermedium. The cells of stratum intermedium and papillary layer, however, continued to react for Ca++-ATPase even after TFP treatment. Similarly, Na+-K+-ATPase activity in these cells was not inhibited by TFP administration. Ultrastructural examination of secretory ameloblasts revealed that administration of TFP caused no considerable cytological changes and did not act as a cytotoxic agent. These results suggest that secretory ameloblasts may have an active Ca++ transport system, which is modulated by an endogenous calmodulin.  相似文献   

12.
The ultrastructural organization of actively secreting barley (Hordeum vulgare L. cv. Himalaya) aleurone cells was examined using ultrarapid-freezing (<-10 000°C s-1) followed by freeze-fracture and freeze-substitution. Our analysis indicates that much of the evidence supporting a direct pathway from the endoplasmic reticulum (ER) to the plasma membrane (i.e. bypassing the Golgi apparatus) for the secretion of -amylase (EC 3.2.1.1) may not be valid. Cryofixed ER cisternae show no sign of vesiculation during active -amylase secretion in gibberellic acid (GA3)-treated cells. At the same time, Golgi complexes are abundant and numerous small vesicles are associated with the edges of the cisternae. Vesicles appear to be involved in the delivery of secretory products to the plasma membrane since depressions containing excess membrane material appear there. Treatment with GA3 also induces changes in the composition of Golgi membranes; most notably, the density of intramembrane particles increases from 2700 m-2 to 3800 m-2 because of an increase of particles in the 3–8.5-nm size range. A slight decrease in 9–11-nm particles also occurs. These changes in membrane structure appear to occur as the Golgi complex becomes committed to the processing and packaging of secretory proteins. We suggest that secretory proteins in this tissue are synthesized in the abundant rough ER, packaged in the Golgi apparatus, and transported to the plasma membrane via Golgi-derived secretory vesicles. Mobilization of reserves is also accompanied by dynamic membrane events. Our micrographs show that the surface monolayer of the lipid bodies fuses with the outer leaflet of the bilayer of protein-body membranes during the mobilization of lipid reserves. Following the breakdown of the protein reserves, the protein bodies assume a variety of configurations.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - P protoplasmic - E exoplasmic  相似文献   

13.
Opening ofanion-conductive pathways in apical membranes of secretory cells liningmucosal surfaces is a critical step in salt and water secretion and,thus, hydration of sites including airway and intestine. In intestine,Paneth cells are positioned at the base of the secretory gland (crypt)and release defensin peptide, in mice termed cryptdins, into the cryptlumen. Because at least some defensins have been shown to formanion-conductive channels in phospholipid bilayers, we tested whetherthese endogenous antimicrobial peptides could act as soluble inducersof channel-like activity when applied to apical membranes. To directlyevaluate the possibility of cryptdin-3-mediated apical anionconductance (Gap), we have utilized amphotericinB to selectively permeabilize basolateral membranes of electricallytight monolayers of polarized human intestinal secretory epithelia (T84cells), thus isolating the apical membrane for study. Cryptdin-3induces Gap that is voltage independent(Gap = 1.90 ± 0.60 mS/cm2) and exhibits ion selectivity contrasting to thatelicited by forskolin or thapsigargin (for cryptdin-3,Cl = gluconate; for forskolin and thapsigargin,Cl gluconate). We cannot exclude the possibility thatthe macroscopic current induced by cryptdin could be the sum of cationand Cl currents. Cryptdin-3 induces a current inbasolaterally permeabilized epithelial monolayers derived from airwaycells harboring the F508 mutation of cystic fibrosis (CF;Gap = 0.80 ± 0.06 mS/cm2), demonstrating that cryptdin-3 restores anionsecretion in CF cells; this occurs independently of the CFtransmembrane conductance regulator channel. These results support theidea that cryptdin-3 may associate with apical membranes ofCl-secreting epithelia and self-assemble into conductingchannels capable of mediating a physiological response.

  相似文献   

14.
15.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

16.
Recently, two distinct cDNA clones encoding the catalytic subunit of the vacuolar H+-ATPase (V-ATPase) were isolated from the allotetraploid cotton species Gossypium hirsutum L. cv Acala SJ-2 (Wilkins 1992, 1993). Differences in the nucleotide sequence of these clones were used as molecular markers to explore the organization and structure of the V-ATPase catalytic subunit genes in the A and D genomes of diploid and allotetraploid cotton species. Nucleotide sequencing of polymerase chain reaction (PCR) products amplified from G. arboreum (A2, 2n=26), G. raimondii (D5, 2n=26), and G. hirsutum cv Acala SJ-2 [(AD)1, 2n=4x=52] revealed a V-ATPase catalytic subunit organization more complex than indicated hitherto in any species, including higher plants. In the genus Gossypium, the V-ATPase catalytic subunit genes are organized as a superfamily comprising two diverse but closely related multigene families, designated as vat69A and vat69B, present in both diploid and allotetraploid species. As expected, each vat69 subfamily is correspondingly more complex in the allotetraploid species due to the presence of both A and D alloalleles. Because of this, about one-half of the complex organization of V-ATPase catalytic subunit genes predates polyploidization and speciation of New World tetraploid species. Comparison of plant and fungal V-ATPase catalytic subunit gene structure indicates that introns accrued in the plant homologs following the bifurcation of plant and fungi but prior to the gene duplication event that gave rise to the vat69A and vat69B genes approximately 45 million years ago. The structural complexity of plant V-ATPase catalytic subunit genes is highly conserved, indicating the presence of at least ten introns dispersed throughout the coding region.  相似文献   

17.
The abdominal portion of the salivary glands in the blowfly has been studied intensively. Here, we examine the thoracic part of the salivary glands, emphasizing structural and functional aspects. The initial segment downstream of the abdominal portion is secretory and resembles the latter in most structural and functional aspects: the apical membrane is enfolded, forms a canalicular system and contains V-H+-ATPase that assembles upon stimulation with the hormone serotonin (5-HT); Na,K-ATPase is localized in the basolateral membrane; septate junctions are not prominent, as deduced from immunofluorescence staining for the marker proteins discs large and fasciclin III. 5-HT elicits, at low concentrations, cytoplasmic [Ca2+] oscillations, and, at saturating concentrations, a tonic [Ca2+] rise. The following, so-called “re-absorptive” segment loops through the coiled secretory portion of the salivary gland. The apical membrane of the re-absorptive cells is not enfolded, and septate junctions are prominent. V-H+-ATPase and Na,K-ATPase reside on the apical and basolateral membranes, respectively. Finally, re-absorptive cells are also sensitive to 5-HT; however, whereas V-ATPase assembly has a 5-HT concentration dependence similar to other segments, the Ca2+ response occurs only at higher 5-HT concentrations, and displays a different kinetic pattern.  相似文献   

18.
Summary An antibody to the 96 kD -subunit of the Na+, K+ -ATPase from Bufo marinus has been used in immunostaining rat kidney and salivary glands. Intense staining was observed on basolateral membranes of distal tubules of the kidney and striated ducts of the three major salivary glands. Less intense staining was seen on the basolateral membranes of parotid acinar cells, but no staining was seen on the acinar cells of submandibular or sublingual glands. These sites of staining have been shown, by other methods, to posses substantial Na+, K+ -ATPase, indicating that the antibody recognizes antigenic determinants of the sodium pump highly conserved in the course of evolution. In addition, staining with this antibody was observed at the apical region of cells of the proximal straight tubule and of the papillary collecting duct in the kidney. Absorption studies suggest that the apical antigenic determinants are the same or closely related to each other but are distinct from basolateral antigenic determinants.  相似文献   

19.
Summary The isolated pigment epithelium and choroid of frog was mounted in a chamber so that the apical surfaces of the epithelial cells and the choroid were exposed to separate solutions. The apical membrane of these cells was penetrated with microelectrodes and the mean apical membrane potential was –88 mV. The basal membrane potential was depolarized by the amount of the transepithelial potential (8–20mV). Changes in apical and basal cell membrane voltage were produced by changing ion concentrations on one or both sides of the tissue. Although these voltage changes were altered by shunting and changes in membrane resistance, it was possible to estimate apical and basal cell membrane and shunt resistance, and the relative ionic conductanceT i of each membrane. For the apical membrane:T K0.52,T HCO 3=0.39 andT Na=0.05, and its specific resistance was estimated to be 6000–7000 cm2. From the basalT K=0.90 and its specific resistance was estimated to be 400–1200 cm2. From the basal potassium voltage responses the intracellular potassium concentration was estimated at 110mm. The shunt resistance consisted of two pathways: a paracellular one, due to the junctional complexes and another, around the edge of the tissue, due to the imperfect nature of the mechanical seal. In well-sealed tissues, the specific resistance of the shunt was about ten times the apical plus basal membrane specific resistances. This epithelium, therefore, should be considered tight. The shunt pathway did not distinguish between anions (HCO3 , Cl, methylsulfate, isethionate) but did distinguish between Na+ and K+.  相似文献   

20.
Intracellular protein distribution and sorting were examined in rat parotid striated duct cells, in which tissue kallikrein is apical, and Na,K-ATPase is basolateral. Electron-microscopic immunogold cytochemistry, with both polyclonal and monoclonal antibodies, demonstrated these enzymes at opposite poles of the cells and in distinct intracellular sites. Kallikrein was found within apical secretory granules, whereas Na,K-ATPase was present on basolateral cell membranes. In addition, kallikrein was localized throughout cisternae of all Golgi profiles, whereas Na,K-ATPase (-subunit) was found only in small peripheral vesicles and/or lateral cisternal extensions of a basal subset of Golgi profiles. These differences in the subcellular distribution of the two marker antigens were most clearly seen with double immunogold labelling. Our results suggest that kallikrein, an apical, regulated secretory protein, and Na,K-ATPase, a basolateral, constitutively transported membrane protein, are segregated at (or prior to) the level of the Golgi apparatus rather than in the trans-Golgi network (TGN), as was expected.Abbreviations ATP adenosine tri-phosphate - HBSS Hanks' balanced salt solution - GaM goat anti-mouse - GaR goat anti-rabbit - PBS phosphate-buffered saline - RaM rabbit anti-mouse - RER rough endoplasmic reticulum - TGN trans-Golgi network  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号