首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heo J  Thapar R  Campbell SL 《Biochemistry》2005,44(17):6573-6585
Vav proteins are Rho GTPase-specific guanine nucleotide exchange factors (GEFs) that are distinguished by the tandem arrangement of Dbl homology (DH), Pleckstrin homology (PH), and cysteine rich domains (CRD). Whereas the tandem DH-PH arrangement is conserved among Rho GEFs, the presence of the CRD is unique to Vav family members and is required for efficient nucleotide exchange. We provide evidence that Vav2-mediated nucleotide exchange of Rho GTPases follows the Theorell-Chance mechanism in which the Vav2.Rho GTPase complex is the major species during the exchange process and the Vav2.GDP-Mg(2+).Rho GTPase ternary complex is present only transiently. The GTPase specificity for the DH-PH-CRD Vav2 in vitro follows this order: Rac1 > Cdc42 > RhoA. Results obtained from fluorescence anisotropy and NMR chemical shift mapping experiments indicate that the isolated Vav1 CRD is capable of directly associating with Rac1, and residues K116 and S83 that are in the proximity of the P-loop and the guanine base either are part of this binding interface or undergo a conformational change in response to CRD binding. The NMR studies are supported by kinetic measurements on Rac1 mutants S83A, K116A, and K116Q and Vav2 CRD mutant K533A in that these mutants affect both the initial binding event of Vav2 with Rac1 (k(on)) and the rate-limiting dissociation of Vav2 from the Vav2.Rac1 binary complex (thereby influencing the enzyme turnover number, k(cat)). The results suggest that the CRD domain in Vav proteins plays an active role, affecting both the k(on) and the k(cat) for Vav-mediated nucleotide exchange on Rho GTPases.  相似文献   

2.
RABEX-5 and other exchange factors with VPS9 domains regulate endocytic trafficking through activation of the Rab family GTPases RAB5, RAB21 and RAB22. Here we report the crystal structure of the RABEX-5 catalytic core in complex with nucleotide-free RAB21, a key intermediate in the exchange reaction pathway. The structure reveals how VPS9 domain exchange factors recognize Rab GTPase substrates, accelerate GDP release and stabilize the nucleotide-free conformation. We further identify an autoinhibitory element in a predicted amphipathic helix located near the C terminus of the VPS9 domain. The autoinhibitory element overlaps with the binding site for the multivalent effector RABAPTIN-5 and potently suppresses the exchange activity of RABEX-5. Autoinhibition can be partially reversed by mutation of conserved residues on the nonpolar face of the predicted amphipathic helix or by assembly of the complex with RABAPTIN-5.  相似文献   

3.
Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of ∼0.3 µM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of βPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells.  相似文献   

4.
Mechanisms underlying subcellular region-specific regulation of Rho family GTPases through Dbl family guanine nucleotide exchange factors (GEFs) remain totally unknown. Here we show that the Sec14-like domain, which lies in the N-terminus of the Dbl family GEFs Dbl and Ost, directs the subcellular localization of these GEFs and also their substrate Cdc42. When coexpressed with Cdc42 in human adenocarcinoma HeLa cells, Dbl-I and Ost-I, which lack the Sec14-like domain, translocated Cdc42 to the plasma membrane, where Dbl-I or Ost-I was colocalized. In marked contrast, Dbl-II and Ost-II, which contain the Sec14-like domain, were colocalized with Cdc42 in endomembrane compartments. Furthermore, ruffle membrane formation upon epidermal growth factor treatment was mediated by Dbl-I or Ost-I, but neither Dbl-II nor Ost-II, supporting a notion that GEFs with or without the Sec14-like domain are linked to different upstream signals. By employing a novel method to detect the active GTP-bound form of Cdc42 in situ, we demonstrate that Dbl-I and Ost-I, but neither Dbl-II nor Ost-II, indeed activate colocalized Cdc42.  相似文献   

5.
The bacterial enteropathogen Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. One of these translocated Salmonella toxins, SopE, can activate Cdc42 in a Dbl-like fashion despite its lack of sequence similarity to Dbl-like proteins, the Rho-specific eukaryotic guanine nucleotide exchange factors. To elucidate the mechanism of SopE-mediated guanine nucleotide exchange, we have analyzed the structure of the complex between a catalytic fragment of SopE and Cdc42. SopE binds to and locks the switch I and switch II regions of Cdc42 in a conformation that promotes guanine nucleotide release. This conformation is strikingly similar to that of Rac1 in complex with the eukaryotic Dbl-like exchange factor Tiam1. However, the catalytic domain of SopE has an entirely different architecture from that of Tiam1 and interacts with the switch regions via different amino acids. Therefore, SopE represents the first example of a non-Dbl-like protein capable of inducing guanine nucleotide exchange in Rho family proteins.  相似文献   

6.
Dbl family guanine nucleotide exchange factors   总被引:27,自引:0,他引:27  
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.  相似文献   

7.
Structural basis of Rho GTPase-mediated activation of the formin mDia1   总被引:1,自引:0,他引:1  
Diaphanous-related formins (DRFs) regulate dynamics of unbranched actin filaments during cell contraction and cytokinesis. DRFs are autoinhibited through intramolecular binding of a Diaphanous autoinhibitory domain (DAD) to a conserved N-terminal regulatory element. Autoinhibition is relieved through binding of the GTPase RhoA to the N-terminal element. We report the crystal structure of the dimeric regulatory domain of the DRF, mDia1. Dimerization is mediated by an intertwined six-helix bundle, from which extend two Diaphanous inhibitory domains (DIDs) composed of five armadillo repeats. NMR and biochemical mapping indicate the RhoA and DAD binding sites on the DID partially overlap, explaining activation of mDia1 by the GTPase. RhoA binding also requires an additional structurally independent segment adjacent to the DID. This regulatory construction, involving a GTPase binding site spanning a flexibly tethered arm and the inhibitory module, is observed in many autoinhibited effectors of Ras superfamily GTPases, suggesting evolutionary pressure for this design.  相似文献   

8.
Phospholipase C-epsilon (PLC-epsilon) is a highly elaborated PLC required for a diverse set of signaling pathways. Here we use a combination of cellular assays and studies with purified proteins to show that activated RhoA and Ras isoforms directly engage distinct regions of PLC-epsilon to stimulate its phospholipase activity. Purified PLC-epsilon was activated in a guanine nucleotide- and concentration-dependent fashion by purified lipidated K-Ras reconstituted in PtdIns(4,5)P(2)-containing phospholipid vesicles. Whereas mutation of two critical lysine residues within the second Ras-association domain of PLC-epsilon prevented K-Ras-dependent activation of the purified enzyme, guanine nucleotide-dependent activation by RhoA was retained. Deletion of a loop unique to PLC-epsilon eliminated its activation by RhoA but not H-Ras. In contrast, removal of the autoinhibitory X/Y-linker region of the catalytic core of PLC-epsilon markedly activates the enzyme (Hicks, S. N., Jezyk, M. R., Gershburg, S., Seifert, J. P., Harden, T. K., and Sondek, J. (2008) Mol. Cell, 31, 383-394), but PLC-epsilon lacking this regulatory region retained activation by both Rho and Ras GTPases. Additive activation of PLC-epsilon by RhoA and K- or H-Ras was observed in intact cell studies, and this additivity was recapitulated in experiments in which activation of purified PLC-epsilon was quantified with PtdIns(4,5)P(2)-containing phospholipid vesicles reconstituted with purified, isoprenylated GTPases. A maximally effective concentration of activated RhoA also increased the sensitivity of purified PLC-epsilon to activation by K-Ras. These results indicate that PLC-epsilon can be directly and concomitantly activated by both RhoA and individual Ras GTPases resulting in diverse upstream control of signaling cascades downstream of PLC-epsilon.  相似文献   

9.
《Cellular signalling》2014,26(9):1825-1836
The protein kinase Rad53 is a key regulator of the DNA damage checkpoint in budding yeast. Its human ortholog, CHEK2, is mutated in familial breast cancer and mediates apoptosis in response to genotoxic stress. Autophosphorylation of Rad53 at residue Thr354 located in the kinase activation segment is essential for Rad53 activation. In this study, we assessed the requirement of kinase domain dimerization and the exchange of its activation segment during the Rad53 activation process. We solved the crystal structure of Rad53 in its dimeric form and found that disruption of the observed head-to-tail, face-to-face dimer structure decreased Rad53 autophosphorylation on Thr354 in vitro and impaired Rad53 function in vivo. Moreover, we provide critical functional evidence that Rad53 trans-autophosphorylation may involve the interkinase domain exchange of helix αEF via an invariant salt bridge. These findings suggest a mechanism of autophosphorylation that may be broadly applicable to other protein kinases.  相似文献   

10.
11.
Dbl is a representative prototype of a growing family of oncogene products that contain the Dbl homology/pleckstrin homology elements in their primary structures and are associated with a variety of neoplastic pathologies. Members of the Dbl family have been shown to function as physiological activators (guanine nucleotide exchange factors) of the Rho-like small GTPases. Although the expression of GTPase-defective versions of Rho proteins has been shown to induce a transformed phenotype under different conditions, their transformation capacity has been typically weak and incomplete relative to that exhibited by dbl-like oncogenes. Moreover, in some cases (e.g. NIH3T3 fibroblasts), expression of GTPase-defective Cdc42 results in growth inhibition. Thus, in attempting to reconstitute dbl-induced transformation of NIH3T3 fibroblasts, we have generated spontaneously activated ("fast-cycling") mutants of Cdc42, Rac1, and RhoA that mimic the functional effects of activation by the Dbl oncoprotein. When stably expressed in NIH3T3 cells, all three mutants caused the loss of serum dependence and showed increased saturation density. Furthermore, all three stable cell lines were tumorigenic when injected into nude mice. Our data demonstrate that all three Dbl targets need to be activated to promote the full complement of Dbl effects. More importantly, activation of each of these GTP-binding proteins contributes to a different and distinct facet of cellular transformation.  相似文献   

12.
Leukemia-associated Rho guanine nucleotide exchange factor (LARG) was originally identified as a fusion partner with mixed-lineage leukemia in a patient with acute myeloid leukemia. LARG possesses a tandem Dbl homology and pleckstrin homology domain structure and, consequently, may function as an activator of Rho GTPases. In this study, we demonstrate that LARG is a functional Dbl protein. Expression of LARG in cells caused activation of the serum response factor, a known downstream target of Rho-mediated signaling pathways. Transient overexpression of LARG did not activate the extracellular signal-regulated kinase or c-Jun NH(2)-terminal kinase mitogen-activated protein kinase cascade, suggesting LARG is not an activator of Ras, Rac, or Cdc42. We performed in vitro exchange assays where the isolated Dbl homology (DH) or DH/pleckstrin homology domains of LARG functioned as a strong activator of RhoA, but exhibited no activity toward Rac1 or Cdc42. We found that LARG could complex with RhoA, but not Rac or Cdc42, in vitro, and that expression of LARG caused an increase in the levels of the activated GTP-bound form of RhoA, but not Rac1 or Cdc42, in vivo. Thus, we conclude that LARG is a RhoA-specific guanine nucleotide exchange factor. Finally, like activated RhoA, we determined that LARG cooperated with activated Raf-1 to transform NIH3T3 cells. These data demonstrate that LARG is the first functional Dbl protein mutated in cancer and indicate LARG-mediated activation of RhoA may play a role in the development of human leukemias.  相似文献   

13.
Small GTPases of the Rho family serve as conformational switches in a wide variety of signal transduction pathways that regulate diverse cellular functions. The GTP-bound forms of Rho GTPases are capable of interacting with downstream effectors that control cytoskeletal rearrangements. Regulators that stimulate nucleotide exchange, the hydrolytic cycle and distribution between the membrane and cytosol control the switch. Detailed pictures of Rho GTPase switching, effector recognition and regulation by regulators have emerged from recent structural investigations. These include the most extensively studied Rho GTPases, RhoA, Rac1, 2 and Cdc42, and their complexes with effectors and regulators. These studies have revealed the general diversity of effector and regulator structures, and in particular the structural features concerning the specific interactions involved in Rho effector recognition and regulator interactions with Rho GTPase. These findings provide a critical insight into the nature of Rho GTPase activity and consequently allow for a detailed manipulation of signaling pathways mediated by these proteins.  相似文献   

14.
15.
Aghazadeh B  Lowry WE  Huang XY  Rosen MK 《Cell》2000,102(5):625-633
Rho-family GTPases transduce signals from receptors leading to changes in cell shape and motility, mitogenesis, and development. Proteins containing the Dbl homology (DH) domain are responsible for activating Rho GTPases by catalyzing the exchange of GDP for GTP. Receptor-initiated stimulation of Dbl protein Vav exchange activity involves tyrosine phosphorylation. We show through structure determination that the mVav1 DH domain is autoinhibited by an N-terminal extension, which lies in the GTPase interaction site. This extension contains the Tyr174 Src-family kinase recognition site, and phosphorylation or truncation of this peptide results in stimulation of GEF activity. NMR spectroscopy data show that the N-terminal peptide is released from the DH domain and becomes unstructured upon phosphorylation. Thus, tyrosine phosphorylation relieves autoinhibition by exposing the GTPase interaction surface of the DH domain, which is obligatory for Vav activation.  相似文献   

16.
17.
Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.  相似文献   

18.
The fibroblast growth factor receptor (FGFR) can be activated through direct interaction with the neural cell adhesion molecule (NCAM). The extracellular part of the FGFR consists of three immunoglobulin-like (Ig) modules, and that of the NCAM consists of five Ig and two fibronectin type III (F3) modules. NCAM-FGFR interactions are mediated by the third FGFR Ig module and the second NCAM F3 module. Using surface plasmon resonance and nuclear magnetic resonance analyses, the present study demonstrates that the second Ig module of FGFR also is involved in binding to the NCAM. The second Ig module residues involved in binding were identified and shown to be localized on the "opposite sides" of the module, indicating that when NCAMs are clustered (e.g., due to homophilic binding), high-affinity FGFR binding sites may be formed by the neighboring NCAMs.  相似文献   

19.
Yang HW  Shin MG  Lee S  Kim JR  Park WS  Cho KH  Meyer T  Do Heo W 《Molecular cell》2012,47(2):281-290
Phosphoinositide 3-kinases (PI3Ks) and Ras and Rho family small GTPases are key regulators of cell polarization, motility, and chemotaxis. They influence each other's activities by direct and indirect feedback processes that are only partially understood. Here, we show that 21 small GTPase homologs activate PI3K. Using a microscopy-based binding assay, we show that K-Ras, H-Ras, and five homologous Ras family small GTPases function upstream of PI3K by directly binding the PI3K catalytic subunit, p110. In contrast, several Rho family small GTPases activated PI3K by an indirect cooperative positive feedback that required a combination of Rac, CDC42, and RhoG small GTPase activities. Thus, a distributed network of Ras and Rho family small GTPases induces and reinforces PI3K activity, explaining past challenges to elucidate the specific relevance of different small GTPases in regulating PI3K and controlling cell polarization and chemotaxis.  相似文献   

20.
The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ~25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号