首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme tissue-type plasminogen activator (t-PA) and its substrate Glu-plasminogen can both bind to fibrin. The assembly of these three components results in about a 1000-fold acceleration of the conversion of Glu-plasminogen into plasmin. Fibrin binding of t-PA is mediated both by its finger (F) domain and its kringle-2 domain. Fibrin binding of Glu-plasminogen involves its kringle structures (K1-K5). It has been suggested that particular kringles contain lysine-binding sites and/or aminohexyl-binding sites, exhibiting affinity for specific carboxyl-terminal lysines and intrachain lysines, respectively. We investigated the possibility that t-PA and Glu-plasminogen kringles share common binding sites in fibrin, limitedly digested with plasmin. For that purpose we performed competition experiments, using conditions that exclude plasmin formation, with Glu-plasminogen and either t-PA or two deletion mutants, lacking the F domain (t-PA del.F) or lacking the K2 domain (t-PA del.K2). Our data show that fibrin binding of t-PA, mediated by the F domain, is independent of Glu-plasminogen binding. In contrast, partial inhibition by Glu-plasminogen of t-PA K2 domain-mediated fibrin binding is observed that is dependent on carboxyl-terminal lysines, exposed in fibrin upon limited plasmin digestion. Half-maximal competition of fibrin binding of both t-PA and t-PA del.F is obtained at 3.3 microM Glu-plasminogen. The difference between this value and the apparent dissociation constant of Glu-plasminogen binding to limitedly digested fibrin (12.1 microM) under these conditions is attributed to multiple, simultaneous interactions, each having a separate affinity. It is concluded that t-PA and Glu-plasminogen can bind to the same carboxyl-terminal lysines in limitedly digested fibrin, whereas binding sites composed of intrachain lysines are unique both for the K2 domain of t-PA and the Glu-plasminogen kringles.  相似文献   

2.
Actin accelerates plasmin generation by tissue plasminogen activator.   总被引:2,自引:0,他引:2  
Actin has been found to bind to plasmin's kringle regions, thereby inhibiting its enzymatic activity in a noncompetitive manner. We, therefore, examined its effect upon the conversion of plasminogen to plasmin by tissue plasminogen activator. Actin stimulated plasmin generation from both Glu- and Lys-plasminogen, lowering the Km for activation of Glu-plasminogen into the low micromolar range. Accelerated plasmin generation did not occur in the presence of epsilon-amino caproic acid or if actin was exposed to acetic anhydride, an agent known to acetylate lysine residues. Actin binds to tissue plasminogen activator (t-Pa) (Kd = 0.55 microM), at least partially via lysine-binding sites. Actin's stimulation of plasmin generation from Glu-plasminogen was inhibited by the addition of aprotinin and was restored by the substitution of plasmin-treated actin, indicating the operation of a plasmin-dependent positive feedback mechanism. Native actin binds to Lys-plasminogen, and promotes its conversion to plasmin even in the presence of aprotinin, indicating that plasmin's cleavage of either actin or plasminogen leads to further plasmin generation. Plasmin-treated actin binds Glu-plasminogen and t-PA simultaneously, thereby raising the local concentration of t-PA and plasminogen. Together, but not separately, actin and t-PA prolong the thrombin time of plasma through the generation of plasmin and fibrinogen degradation products. Actin-stimulated plasmin generation may be responsible for some of the changes found in peripheral blood following tissue injury and sepsis.  相似文献   

3.
Modification of glutamic and aspartic acid residues of tissue-type plasminogen activator (t-PA) with 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide leads to a decrease in affinity for lysine and fibrin, to a decrease of plasminogen activation activity in the presence of a fibrin mimic, but leaves amidolytic activity and plasminogen activation without fibrin mimic unaffected. Experiments with kringle-2 ligands and a deletion mutant of t-PA (K2P) suggests that glutamic or aspartic acid residues in K2 of t-PA are involved in stimulation of activity, lysine binding and fibrin binding. Mutant t-PA molecules were constructed by site-directed mutagenesis in which one or two of the five aspartic or glutamic acid residues in K2 were changed to asparagine or glutamine respectively. Mutation of Asp236 and/or Asp238 leads to t-PA molecules with 3- to 4-fold lower specific activity in the presence of fibrin mimic and having no detectable affinity for lysine analogs. However, fibrin binding was not influenced. Mutation of Glu254 also leads to a 3- to 4-fold lower activity, but to a much smaller reduction of lysine or fibrin binding. Residues Asp236 and Asp238 are both essential for binding to lysine derivatives, while Glu254 might be involved but is not essential. Residues Asp236, Asp238 and Glu254 are all three involved in stimulation of activity. Remarkably, mutation of residues Asp236 and/or Asp238 appears not to influence fibrin binding of t-PA whereas that of Glu254 does.  相似文献   

4.
In contrast to most other serine proteases, tissue-type plasminogen activator (t-PA) possesses enzymatic activity as the one-chain zymogen form. The hypothesis that lysine residues 277 or 416 may be involved in stabilization of an active conformation of one-chain t-PA via salt-bridge formation with aspartic acid residue 477 was tested by site-directed mutagenesis. Four recombinant t-PA mutants were constructed. The amidolytic activities of these analogues were compared to that of authentic t-PA. Substitution of arginine-275 provided an analogue [( R275G]t-PA) resistant to plasmin cleavage. The amidolytic activity of [R275G]t-PA was comparable to that of authentic one-chain t-PA, and so was the activity of [R275L,K277L]t-PA, in which additional substitution of lysine residue 277 was carried out. This suggested that its presence was nonessential for obtaining one-chain t-PA activity. In contrast, substitution of lysine residue 416 to obtain [K416S]t-PA and [K416S,H417T]t-PA resulted in substantial quenching of amidolytic one-chain activity. As expected, the amidolytic activities of the two-chain forms were less affected by the substitution. Involvement of lysine residue 416 in one-chain t-PA activity was also indicated by decreased activities of [K416S]t-PA and [K416S,H417T]t-PA with plasminogen as the substrate. The one-chain activity of the lysine residue 416 substitution analogues was partially restored in the presence of fibrin. This could indicate that strong ligands such as fibrin might provide an alternative stabilization of the active conformation of one-chain t-PA.  相似文献   

5.
Human tissue-type plasminogen activator (t-PA) consists of five domains designated (starting from the N-terminus) finger, growth factor, kringle 1, kringle 2, and protease. The binding of t-PA to lysine-Sepharose and aminohexyl-Sepharose was found to require kringle 2. The affinity for binding the lysine derivatives 6-aminohexanoic acid and N-acetyllysine methyl ester was about equal, suggesting that t-PA does not prefer C-terminal lysine residues for binding. Intact t-PA and a variant consisting only of kringle 2 and protease domains were found to bind to fibrin fragment FCB-2, the very fragment that also binds plasminogen and acts as a stimulator of t-PA-catalyzed plasminogen activation. In both cases, binding could completely be inhibited by 6-aminohexanoic acid, pointing to the involvement of a lysine binding site in this interaction. Furthermore, the second site in t-PA involved in interaction with fibrin, presumably the finger, appears to interact with a part of fibrin, different from FCB-2.  相似文献   

6.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

7.
The binding of tissue-type plasminogen activator (t-PA) to fibrin is mediated both by its finger domain and by its kringle-2 domain. In this report, we investigate the relative affinities of these domains for lysine. Human recombinant t-PA deletion-mutant proteins were prepared and their ability to bind to lysine-Sepharose was investigated. Mutants containing the kringle-2 domain bound to lysine-Sepharose, whereas mutants lacking this domain but containing the finger domain, the epidermal growth factor domain or the kringle-1 domain did not bind to lysine-Sepharose. Mutant proteins containing the kringle-2 domain could be specifically eluted from lysine-Sepharose with epsilon-amino caproic acid. This lysine derivative also abolished fibrin binding by the kringle-2 domain but had no effect on the fibrin-binding property of the finger domain. Thus, a lysine-binding site is involved in the interaction of the kringle-2 domain with fibrin but not in the interaction of the finger domain with fibrin. The implications of the nature of these two distinct interactions of t-PA with fibrin on plasminogen activation by t-PA will be discussed.  相似文献   

8.
The effects of 4 monoclonal antibodies against human tissue-type plasminogen activator (t-PA) on binding of t-PA to lysine, fibrin, and heparin, and on fibrin-mediated activation of one-chain t-PA-amidolytic activity were investigated. The association constants of the antibodies were determined in a direct assay to be equal to 0.125 l/nmol, 0.225 l/nmol, 0.4 l/nmol, and 0.5 l/nmol for mAB 5, mAB 16, mAB 25, and mAB 31, respectively. All 4 monoclonal antibodies inhibited binding of intact t-PA to lysine-Sepharose and fibrin, and they suppressed fibrin-mediated activation of one-chain t-PA-amidolytic activity. Binding analysis demonstrated that mAB 25 inhibited t-PA binding to lysine-Sepharose and to fibrin as well as fibrin-mediated enhancement of one-chain t-PA-amidolytic activity in a competitive manner with inhibitor constants of 5 nmol/l, 3 nmol/l and 10 nmol/l, respectively. It was also shown that free lysine counteracts the association of t-PA with the antibodies. Binding of t-PA to heparin is only moderately affected by the 4 antibodies. Since t-PA possesses two homologous kringle domains which contain fibrin (lysine) binding sites, the results underline the importance of a lysine binding site for fibrin binding by intact t-PA and show that the binding of the enzyme to fibrin and lysine is mediated by the same binding site of a kringle domain. The parallel effects of antibodies on fibrin binding and on fibrin-mediated enhancement of one-chain t-PA amidolytic activity proves that the site of fibrin binding is identical with the site of fibrin activation. The binding site of heparin apparently differs from lysine and fibrin binding sites.  相似文献   

9.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

10.
A comparative kinetic analysis of the enzymatic activities of one-chain and two-chain tissue-type plasminogen activator (t-PA) demonstrates that two-chain t-PA catalyzes the hydrolysis of the peptide substrate D-Val-Leu-Arg-pNA about 4-fold more effectively than one-chain t-PA. The difference is accounted for almost entirely by a corresponding difference is the kcat values of the enzymes, whereas the Km values are similar. The amidolytic activity of two-chain t-PA is not enhanced by intact or partially plasmin-degraded fibrin. In contrast, the activity of one-chain t-PA is stimulated up to 3.7-fold by intact fibrin and up to 4.7-fold by plasmin-degraded fibrin (fibrin X-fragment). The stimulatory effects are realized via increases in the kcat values. It appears thus that in the presence of fibrin the intrinsically inferior catalytic properties of one-chain t-PA become similar to the properties of two-chain t-PA. The dependency of the activity of one-chain t-PA on the concentration of fibrin monomer is consistent with a single association site of both proteins and an association constant of Kass = 6.25 x 10(6) l/mol. Stimulation of one-chain t-PA by plasmin-degraded fibrin is more complex and appears to involve two different binding sites with association constants of Kass = 0.67 x 10(9) l/mol and Kass = 3.85 x 10(6) l/mol, respectively. The stimulatory effects of fibrin and partially plasmin-degraded fibrin on one-chain t-PA are suppressed by epsilon-aminocaproic acid and by a monoclonal antibody directed against the lysine binding site of t-PA. The latter findings support the notion that fibrin activation of one-chain t-PA is mediated by the lysine binding site on kringel domains of the enzyme.  相似文献   

11.
Fibronectin immobilized onto polystyrene surface was found to bind plasminogen and tissue-type plasminogen activator (t-PA) but only slightly the urokinase type as determined using mono- and polyclonal antibodies against the activators. Of the defined fibronectin fragments tested, the Mr 120,000-140,000 fragment was found to bind both plasminogen and t-PA. Proteolytically modified plasminogen (Lys-plasminogen) bound considerably better than the native form (Glu-plasminogen). Experiments with 125I-plasminogen yielded Kd = 9.1 X 10(-8) M for the binding to immobilized fibronectin. The partially or completely inactive single-chain form of t-PA (pro-t-PA) bound considerably better than the activated two-chain form. Lysine at greater than 3 mM inhibited the binding of plasminogen. The interaction was independent of calcium ions. CaCl2 (greater than 0.5 mM) and NaCl (greater than 0.2 M) inhibited the binding of pro-t-PA and of t-PA. Fibronectin-bound t-PA retained its ability to activate plasminogen. The observed interactions may operate in directional proteolysis localizing plasminogen and plasminogen activator to degrade fibronectin-containing extracellular matrix including fibrin clots.  相似文献   

12.
The kringle-2 domain (residues 176-262) of tissue-type plasminogen activator (t-PA) was cloned and expressed in Escherichia coli. The recombinant peptide, which concentrated in cytoplasmic inclusion bodies, was isolated, solubilized, chemically refolded, and purified by affinity chromatography on lysine-Sepharose to apparent homogeneity. [35S]Cysteine-methionine-labeled polypeptide was used to study the interactions of kringle-2 with lysine, fibrin, and plasminogen activator inhibitor-1. The kringle-2 domain bound to lysine-Sepharose and to preformed fibrin with a Kd = 104 +/- 6.2 microM (0.86 +/- 0.012 binding site) and a Kd = 4.2 +/- 1.05 microM (0.80 +/- 0.081 binding site), respectively. Competition experiments and direct binding studies showed that the kringle-2 domain is required for the formation of the ternary t-PA-plasminogen-intact fibrin complex and that the association between the t-PA kringle-2 domain and fibrin does not require plasmin degradation of fibrin and exposure of new COOH-terminal lysine residues. We also observed that kringle-2 forms a complex with highly purified guanidine-activated plasminogen activator inhibitor-1, dissociable by 0.2 M epsilon-aminocaproic acid. The kringle-2 polypeptide significantly inhibited tissue plasminogen activator/plasminogen activator inhibitor-1 interaction. The kringle-2 domain bound to plasminogen activator inhibitor-1 in a specific and saturable manner with a Kd = 0.51 +/- 0.055 microM (0.35 +/- 0.026 binding site). Therefore, the t-PA kringle-2 domain is important for the interaction of t-PA not only with fibrin, but also with plasminogen activator inhibitor-1 and thus represents a key structure in the regulation of fibrinolysis.  相似文献   

13.
This study deals with the effect of fibrin on the transformation of Glu-plasminogen to Glu-plasmin during fibrinolysis. It focuses particularly on changes in fibrin effector function caused by plasmin-catalysed fibrin degradation. Conversion of 125I-labelled Glu-plasminogen to Glu-plasmin was catalysed by urokinase or tissue plasminogen activator, in the presence of different preparations of progressively degraded fibrin. Plasmin catalysis of Glu-plasminogen and the fibrin (derivative) effector was inhibited by aprotinin. The presence of intact fibrin enhanced the rate of Glu-plasmin formation catalysed by tissue plasminogen activator, but not by urokinase. The presence of initially plasmin-cleaved fibrin, however, increased the rates of Glu-plasmin formation with both activators, as compared to those found with intact fibrin. The rate enhancements induced by initial plasmin degradation of the fibrin effector were associated with an increase in its affinity to both Glu-plasminogen and tissue plasminogen activator, suggesting causal relationships. The weak binding of urokinase was unaffected by fibrin degradation, indicating that effector function was solely exerted on the Glu-plasminogen moiety of urokinase-activated systems. Further degradation of fibrin decreased the stimulating effect on Glu-plasmin formation. This decrease occurred at an earlier stage of degradation with tissue plasminogen activator than with urokinase, indicating that greater integrity of the fibrin effector is necessary for its optimal interaction with the tissue plasminogen activator than with Glu-plasminogen. Concentrations of tranexamic acid that saturate low-affinity lysine-binding sites nearly completely dissociated the binding of Glu-plasminogen to degraded fibrin, but not to intact fibrin. In analogy with the binding of lysine analogues to these sites, the conformation of Glu-plasminogen may be altered by binding to degraded fibrin, thus giving rise to the increased activation rate.  相似文献   

14.
Tissue-type plasminogen activator (t-PA), when isolated from human colon fibroblast (hcf) cells, is N-glycosylated differently than when isolated from the Bowes melanoma (m) cell line (Parekh et al., 1988). Both hcf- and m-t-PA can be separated into type I t-PA (with three occupied N-glycosylation sequons, at Asn-117, -184, and -448) and type II t-PA (with two occupied sequons, at Asn-117 and -448). Oligosaccharide analysis of each of these types of t-PA indicates that hcf-t-PA and m-t-PA have no glycoforms in common, despite having the same primary amino acid sequence. We have therefore compared in vitro the enzymatic activities and fibrin binding of type I and type II hcf- and m-t-PA with those of aglycosyl t-PA isolated from tunicamycin-treated cells. Plasminogen activation kinetics were determined by using an indirect amidolytic assay with Glu-plasminogen and a chromogenic plasmin substrate. In the absence of stimulator, there was little difference in activity between type I and type II t-PA, but the activity of aglycosyl t-PA was 2-4-fold higher than that of the corresponding glycosylated t-PA. In the presence of a fibrinogen fragment stimulator, the Kcat value of type II t-PA was approximately 5-fold that of type I t-PA from the same cell line, while the Km values for activation of Glu-plasminogen were similar (0.13-0.18 microM). The stimulated activity of glycosyl t-PA was similar to that of type II t-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A complex of d-dimer noncovalently associated with fragment E ((DD)E), a degradation product of cross-linked fibrin that binds tissue plasminogen activator (t-PA) and plasminogen (Pg) with affinities similar to those of fibrin, compromises the fibrin specificity of t-PA by stimulating systemic Pg activation. In this study, we examined the effect of thrombin-activable fibrinolysis inhibitor (TAFI), a latent carboxypeptidase B (CPB)-like enzyme, on the stimulatory activity of (DD)E. Incubation of (DD)E with activated TAFI (TAFIa) or CPB (a) produces a 96% reduction in the capacity of (DD)E to stimulate t-PA-mediated activation of Glu- or Lys-Pg by reducing k(cat) and increasing K(m) for the reaction; (b) induces the release of 8 mol of lysine/mol of (DD)E, although most of the stimulatory activity is lost after release of only 4 mol of lysine/mol (DD)E; and (c) reduces the affinity of (DD)E for Glu-Pg, Lys-Pg, and t-PA by 2-, 4-, and 160-fold, respectively. Because TAFIa- or CPB-exposed (DD)E produces little stimulation of Glu-Pg activation by t-PA, (DD)E is not degraded into fragment E and d-dimer, the latter of which has been reported to impair fibrin polymerization. These data suggest a novel role for TAFIa. By attenuating systemic Pg activation by (DD)E, TAFIa renders t-PA more fibrin-specific.  相似文献   

16.
The heparin-binding p30 protein amphoterin is proposed to mediate adhesive interactions of the advancing plasma membrane in migrating and differentiating cells. Since the NH2-terminal part of amphoterin is exceptionally rich in lysine residues, we have studied its interactions with plasminogen and tissue plasminogen activator (t-PA). On immunostaining of N18 neuroblastoma cells, amphoterin and t-PA showed a close co-localization in the filopodia of the leading membrane and in the substrate-attached material. In purified systems, both t-PA and plasminogen bound to immobilized amphoterin, and their binding was inhibited by the lysine analogue epsilon-aminocaproic acid. Plasminogen bound to immobilized amphoterin was activated by t-PA, and this resulted in effective degradation of the immobilized amphoterin. Correspondingly, amphoterin-bound t-PA activated plasminogen. In solution amphoterin accelerated t-PA-catalyzed plasminogen activation maximally 46-fold. The results indicate that t-PA and plasminogen form through their lysine-binding sites a complex with amphoterin, which results in acceleration of plasminogen activation and effective degradation of amphoterin. We suggest that local acceleration of t-PA-catalyzed plasminogen activation by amphoterin at the leading membrane enhances the penetration of growing cytoplasmic processes through extracellular materials during cell migration, differentiation and regeneration. The amphoterin-mediated adhesion at the leading membrane may be transient in nature, because the protein also enhances its own breakdown by accelerating t-PA-catalyzed plasminogen activation.  相似文献   

17.
The aim was to relate fibrin structure and the stimulatory effect of fibrin on plasminogen activation during t-PA-mediated fibrinolysis using Lys78-plasminogen as activator substrate. Structural studies were undertaken by static and dynamic laser light scattering, cryo transmission electron microscopy and by the measurement of conversion of fibrin to X-, Y- and D-fragments. The kinetics of plasmin formation were monitored by measurement of the rate of pNA-release from Val-LeuLys-pNA. The process of fibrin formation and degradation comprised three phases. In the first phase, protofibrils with an average length of about 10 times that of fibrinogen were formed. The duration of this phase decreased with increasing t-PA concentration. The second phase was characterized by a sudden elongation and lateral aggregation of fibrin fibers, most pronounced at low levels of t-PA, and by formation of fragment X-polymer. The third phase was dominated by fragmentation of fibers and by formation of Y- and D-fragments: Plasmin degraded the fibers from within, resulting in the formation of long loose bundles, which subsequently disintegrated into thin filaments with a length of less than 10 and a mass per length close to one relative to fibrinogen. Plasmin generation at high t-PA concentrations sets in just prior to (and at low t-PA concentrations shortly after) the onset of the rapid second phase of elongation and lateral aggregation of fibrin fibers. The maximal rate of plasmin formation per mol t-PA was the same at all concentrations of activator and was achieved close to the time of the peak level of fragment X-polymer. Plasmin formation ceased after formation of substantial amounts of Y- and D-fragments. At this stage the length was between 300 and 3 and the mass per length close to 1, both relative to fibrinogen. In conclusion our results indicate that (1) formation of short fibrin protofibrils is the minimal requirement for the onset of the stimulatory effect of fibrin on plasminogen activation by t-PA, (2) formation of fragment X protofibrils is sufficient to induce optimal stimulation of plasminogen activation, and (3) plasmin degrades laterally aggregated fibrin fibers from within, resulting in the conversion of the fibers into long loose bundles, which later disintegrate into thin filaments.Abbreviations t-PA tissue-type plasminogen activator - Lys78-plasminogen plasmin-modified plasminogen, mainly with NH2-terminal lysine (residues 78-791, residue numbering according to Forsgren et al. 1987) - Val-Leu-Lys-pNA H-D-valyl-L-leucyl-L-lysine-4-nitroanilide - Phe-Pip-Arg-pNA H-D-phenylalanyl-L-arginine-4-nitroanilide - pNA p-nitroanilide - SDS sodium dodecyl sulphate The present work has been supported by the Danish Natural Science Research Council and the Danish Agricultural and Veterinary Research CouncilDeceased on August 2, 1991 Correspondence to: R. Bauer  相似文献   

18.
Angiostatins, kringle-containing fragments of plasminogen, are potent inhibitors of angiogenesis. Effects of three angiostatin forms, K1–3, K1–4, and K1-4.5 (0–2 μM), on the rate of native Glu-plasminogen activation by its physiological activators in the absence or presence of soluble fibrin were investigated in vitro. Angiostatins did not affect the intrinsic amidolytic activities of plasmin and plasminogen activators of tissue type (tPA) and urokinase type (single-chain scuPA and two-chain tcuPA), but inhibited conversion of plasminogen to plasmin in a dose-dependent manner. All three angiostatins suppressed Glu-plasminogen activation by tcuPA independently of the presence of fibrin, and the inhibitory effect increased in the order: K1-3 < K1-4 < K1-4.5. The inhibitory effects of angiostatins on the scuPA activator activity were lower and further decreased in the presence of fibrin. Angiostatin K1-3 (up to 2 μM) had no effect, while 2 μM angiostatins K1-4 and K1-4.5 inhibited the fibrin-stimulated Glu-plasminogen activation by tPA by 50 and 100%, respectively. The difference in effects of the three angiostatins on the Glu-plasminogen activation by scuPA, tcuPA, and tPA in the absence or presence of fibrin is due to the differences in angiostatin structures, mechanisms of action, and fibrin-specificity of plasminogen activators, as well as due to the influence of fibrin on the Glu-plasminogen conformation. Angiostatins in vivo, which mimic plasminogen-binding activity, can inhibit plasminogen activation stimulated by various proteins (including fibrin) of extracellular matrix, thereby blocking cell migration and angiogenesis. The data of this work indicate that the inhibition of Glu-plasminogen activation under the action of physiological plasminogen activators by angiostatins can be implicated in the complex mechanism of their antiangiogenic and antitumor action.  相似文献   

19.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

20.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号