首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Toluene dioxygenase (TDO) catalyzes asymmetric cis-dihydroxylations of aromatic compounds. Pseudomonas putida KT2442 (pSPM01) harboring TDO genes could effectively biotransform a wide-range of aromatic substrates into their cis-diols products. In shake-flask culture, approximately 2.7gl(-1) benzene cis-diols, 8.8gl(-1) toluene cis-diols and 6.0gl(-1) chlorobenzene cis-diols were obtained from the biotransformation process. Furthermore, vgb gene encoding Vitreoscilla hemoglobin protein (VHb) which enhances oxygen microbial utilization rate under low dissolved oxygen concentration was integrated into P. putida KT2442 genome. The oxidation ability of the mutant strain P. putida KTOY02 (pSPM01) harboring TDO gene was increased in the presence of VHb protein. As a result, approximately 3.8, 15.1 or 6.8gl(-1) different cis-diols production was achieved in P. putida KTOY02 (pSPM01) grown in shake-flasks when benzene, toluene or chlorobenzene was used as the substrate. The above results indicate that P. putida KT2442 could be used as a cell factory to biotransform aromatic compounds.  相似文献   

4.
5.
 The synthesis of poly(3-hydroxyalkanoates) (PHA) by Pseudomonas putida KT2442 growing on long-chain fatty acids was studied in continuous cultures. The effects of the growth rate on the biomass and polymer concentration were determined and it was found that the PHA concentrations decreased with increasing growth rates. The highest volumetric productivity was 0.13 g PHA l-1 h-1 at a specific growth rate (μ) of 0.1 h-1. The molecular mass of the polymer remained constant at all growth rates but changes in the monomeric composition of the PHA synthesized were observed. Variation of the carbon to nitrogen (C/N) ratio of the substrate feed at μ=0.1 h-1 revealed optimal PHA formation at C/N=20 mol/mol. In order to optimize PHA production P. putida KT2442 was cultivated to high cell densities in oxygen-limited continuous cultures. In this way a maximum biomass concentration of 30 g/l containing approximately 23% PHA was achieved. This corresponds to a volumetric productivity of 0.69 g  l-1 h-1. Received: 14 December 1995 / Received revision: 18 April 1996 / Accepted: 22 April 1996  相似文献   

6.
Ouyang SP  Luo RC  Chen SS  Liu Q  Chung A  Wu Q  Chen GQ 《Biomacromolecules》2007,8(8):2504-2511
Pseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) consisting of 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO), 3-hydroxydecanoate (HD), and 3-hydroxydodecanoate (HDD) from a wide-range of carbon sources. In this study, fadA and fadB genes encoding 3-ketoacyl-CoA thiolase and 3-hydroxyacyl-CoA dehydrogenase in P. putida KT2442 were knocked out to weaken the beta-oxidation pathway. Two-step culture was proven as the optimal method for PHA production in the mutant termed P. putida KTOY06. In a shake-flask culture, when dodecanoate was used as a carbon source, P. putida KTOY06 accumulated 84 wt % PHA, much higher than 50 wt % PHA in its wild type KT2442. The PHA monomer composition was completely different: the HDD fraction in PHA produced by KTOY06 was 41 mol %, much higher compared with 7.5 mol % only in KT2442. The fermentor-scale culture indicated the HDD fraction in PHA decreased during the culture time from 35 to 25 mol % in a one-step fermentation process or from 75 to 49 mol % in a two-step fermentation process. It is for the first time that PHA with a dominant HDD fraction was produced. Thermal and mechanical properties assays indicated that this new type PHA with a high HDD fraction had higher crystallinity and tensile strength than PHA with a low HDD fraction did, demonstrating an improved application property.  相似文献   

7.
8.
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) consisting of 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO), 3-hydroxydecanoate, 3-hydroxydodecanoate, and high-content 3-hydroxytetradecanoate (HTD) was produced by knockout mutant Pseudomonas putida KT2442 termed P. putida KTOY06. When grown on 6 to14 g/L single-carbon-source tetradecanoic acid, P. putida KTOY06, which β-oxidation pathway was weakened by deleting genes of 3-ketoacyl-coenzyme A (CoA) thiolase (fadA) and 3-hydroxyacyl-CoA dehydrogenase (fadB), for the first time, produced several mcl-PHA including 31 to 49 mol% HTD as a major monomer. HHx contents in these mcl-PHAs remained approximately constant at less than 3 mol%. In addition, large amounts of oligo-HTD were detected in cells, indicating the limited ability of P. putida KTOY06 in polymerizing long-chain-length 3-hydroxyalkanoates. The mcl-PHA containing high HTD monomer contents was found to have both higher crystallinity and improved tensile strength compared with that of typical mcl-PHA.  相似文献   

9.
Pseudomonas putida KT2442 is able to accumulate medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) as intracellular inclusions on a variety of fatty acids and many other carbon sources. Some of these substrates, such as octanoic acid, alkenoic acids, and halogenated derivatives, are toxic when present in excess. Efficient production of mcl-PHAs on such toxic substrates therefore requires control of the carbon source concentration in the supernatant. In this study, we develop a closed-loop control system based on on-line gas chromatography to maintain continuously fed substrates at desired levels. We used the graphical programming environment LABVIEW to set up a flexible process control system that allows users to perform supervisory process control and permits remote access to the fermentation system over the Internet. Single-substrate supernatant concentration in a high-cell-density fed-batch fermentation process was controlled by a proportional (P) controller (P = 50%) acting on the substrate pump feed rate. Na-octanoate concentrations oscillated around the setpoint of 10 mM and could be maintained between 0 and 25 mM at substrate uptake rates as high as 90 mmol L(-1) h(-1). Under cofeeding conditions Na-10-undecenoate and Na-octanoate could be individually controlled at 2.5 mM and 9 mM, respectively, by applying a proportional integral (PI) controller for each substrate. The resulting copolymer contained 43.5 mol% unsaturated monomers and reflected the ratio of 10-undecenoate in the feed. It was suggested that both substrates were consumed at similar rates. These results show that this control system is suitable for avoiding substrate toxicity and supplying carbon substrates for growth and mcl-PHA accumulation.  相似文献   

10.
Monomers of microbial polyhydroxyalkanoates, mainly 3-hydroxyhexanoic acid (3HHx) and 3-hydroxyoctanoic acid (3HO), were produced by overexpressing polyhydroxyalkanoates depolymerase gene phaZ, together with putative long-chain fatty acid transport protein fadL of Pseudomonas putida KT2442 and acyl-CoA synthetase (fadD) of Escherichia coli MG1655 in P. putida KT2442. FadL(Pp), which is responsible for free fatty acid transportation from the extracellular environment to the cytoplasm, and FadD(Ec), which activates fatty acid to acyl-CoA, jointly reinforce the fatty acid beta-oxidation pathway. Pseudomonas putida KT2442 (pYZPst01) harboring polyhydroxyalkanoates depolymerase gene phaZ of Pseudomonas stutzeri 1317 produced 1.37 g L(-1) extracellular 3HHx and 3HO in shake flask studies after 48 h in the presence of sodium octanoate as a sole carbon source, while P. putida KT2442 (pYZPst06) harboring phaZ(Pst), fadD(Ec) and fadL(Pp) achieved 2.32 g L(-1) extracellular 3HHx and 3HO monomer production under the same conditions. In a 48-h fed-batch fermentation process conducted in a 6-L fermentor with 3 L sodium octanoate mineral medium, 5.8 g L(-1) extracellular 3HHx and 3HO were obtained in the fermentation broth. This is the first time that medium-chain-length 3-hydroxyalkanoic acids (mcl-3HA) were produced using fadL(Pp) and fadD(Ec) genes combined with the polyhydroxyalkanoates depolymerase gene phaZ.  相似文献   

11.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

12.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

13.
Biopolymers produced extracellularly by Pseudomonas putida KT2442 were examined via atomic force microscopy (AFM) and single molecule force spectroscopy. Surface biopolymers were probed in solutions with added salt concentrations ranging from that of pure water to 1 M KCl. By studying the physicochemical properties of the polymers over this range of salt concentrations, we observed a transition in the steric and electrostatic properties and in the conformation of the biopolymers that were each directly related to bioadhesion. In low salt solutions, the electrophoretic mobility of the bacterium was negative, and large theoretical energy barriers to adhesion were predicted from soft-particle DLVO theory calculations. The brush layer in low salt solution was extended due to electrostatic repulsion, and therefore, steric repulsion was also high (polymers extended 440 nm from surface in pure water). The extended polymer brush layer was "soft", characterized by the slope of the compliance region of the AFM approach curves (-0.014 nN/nm). These properties resulted in low adhesion between biopolymers and the silicon nitride AFM tip. As the salt concentration increased to > or =0.01 M, a transition was observed toward a more rigid and compressed polymer brush layer, and the adhesion forces increased. In 1 M KCl, the polymer brush extended 120 nm from the surface and the rigidity of the outer cell surface was greater (slope of the compliance region = -0.114 nN/nm). A compressed and more rigid polymer layer, as well as a less negative electrophoretic mobility for the bacterium, resulted in higher adhesion forces between the biopolymers and the AFM tip. Scaling theories for polyelectrolyte brushes were also used to explain the behavior of the biopolymer brush layer as a function of salt concentration.  相似文献   

14.
A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition. Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30°C. The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several toluene-sensitive Tn5 mutants have been isolated from the toluene-resistant strain and showed various levels of sensitivity. Most of these mutations did not cause significant changes in antibiotic resistance; however, one of the mutants (TOL-4) was highly susceptible to both organic solvents and various antibiotics, especially β-lactams. Sequencing analysis revealed that the mutation in TOL-4 had been introduced into a gene that may encode a transporter protein of an efflux system. This efflux system is very similar to one of the multidrug efflux systems of Pseudomonas aeruginosa. These observations indicate that a multidrug efflux system plays a major role in the organic solvent resistance of P. putida TOL. However, several other genes may also be involved. Received: December 18, 1997 / Accepted: March 16, 1998  相似文献   

15.
16.
We developed a new cell surface display system in Pseudomonas putida KT2442 using OprF, an outer membrane protein of Pseudomonas aeruginosa, as an anchoring motif in a C-terminal deletion-fusion strategy. The Pseudomonas fluorescens SIK W1 lipase gene was fused to two different C-terminal truncated OprF genes, and the fusion genes were cloned into the broad-host-range plasmid pBBR1MCS2 to make pMO164PL and pMO188PL. Plasmid pMO188PL allowed better display of lipase and thus was chosen for further study. The display of lipase on the surface of P. putida KT2442 was confirmed by Western blot analysis, immunofluorescence microscopy, and measurement of whole-cell lipase activity. The whole-cell lipase activity of recombinant P. putida KT2442 harboring pMO188PL was more than fivefold higher than that of recombinant Escherichia coli displaying lipase in the same manner. Cell surface-displayed lipase exhibited the highest activity at 47 degrees C and pH 9.0, and the whole-cell lipase activity was greater than 90% of the initial activity in organic solvents at 47 degrees C for 1 week. In a biocatalytic application, enantioselective resolution of 1-phenyl ethanol was carried out in an organic solvent. (R)-Phenyl ethyl acetate was successfully produced with 41.9% conversion and an enantiomeric excess of more than 99% in a 36-h reaction. These results suggest that the OprF anchor can be used for efficient display of proteins in P. putida KT2442 and consequently for various biocatalytic applications.  相似文献   

17.
We developed a new cell surface display system in Pseudomonas putida KT2442 using OprF, an outer membrane protein of Pseudomonas aeruginosa, as an anchoring motif in a C-terminal deletion-fusion strategy. The Pseudomonas fluorescens SIK W1 lipase gene was fused to two different C-terminal truncated OprF genes, and the fusion genes were cloned into the broad-host-range plasmid pBBR1MCS2 to make pMO164PL and pMO188PL. Plasmid pMO188PL allowed better display of lipase and thus was chosen for further study. The display of lipase on the surface of P. putida KT2442 was confirmed by Western blot analysis, immunofluorescence microscopy, and measurement of whole-cell lipase activity. The whole-cell lipase activity of recombinant P. putida KT2442 harboring pMO188PL was more than fivefold higher than that of recombinant Escherichia coli displaying lipase in the same manner. Cell surface-displayed lipase exhibited the highest activity at 47°C and pH 9.0, and the whole-cell lipase activity was greater than 90% of the initial activity in organic solvents at 47°C for 1 week. In a biocatalytic application, enantioselective resolution of 1-phenyl ethanol was carried out in an organic solvent. (R)-Phenyl ethyl acetate was successfully produced with 41.9% conversion and an enantiomeric excess of more than 99% in a 36-h reaction. These results suggest that the OprF anchor can be used for efficient display of proteins in P. putida KT2442 and consequently for various biocatalytic applications.  相似文献   

18.
19.
20.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by a wide range of bacteria, including Pseudomonads. These polymers are accumulated in the cytoplasm as carbon and energy storage materials when culture conditions are unbalanced and hence, they have been classically considered to act as sinks for carbon and reducing equivalents when nutrients are limited. Bacteria facing carbon excess and nutrient limitation store the extra carbon as PHAs through the PHA polymerase (PhaC). Thereafter, under starvation conditions, PHA depolymerase (PhaZ) degrades PHA and releases R -hydroxyalkanoic acids, which can be used as carbon and energy sources. To study the influence of a deficient PHA metabolism in the growth of Pseudomonas putida KT2442 we have constructed two mutant strains defective in PHA polymerase ( phaC1 )- and PHA depolymerase ( phaZ )-coding genes respectively. By using these mutants we have demonstrated that PHAs play a fundamental role in balancing the stored carbon/biomass/number of cells as function of carbon availability, suggesting that PHA metabolism allows P. putida to adapt the carbon flux of hydroxyacyl-CoAs to cellular demand. Furthermore, we have established that the coordination of PHA synthesis and mobilization pathways configures a functional PHA turnover cycle in P. putida KT2442. Finally, a new strain able to secrete enantiomerically pure R -hydroxyalkanoic acids to the culture medium during cell growth has been engineering by redirecting the PHA cycle to biopolymer hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号