首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.  相似文献   

2.
Cyclic AMP (cAMP) blocks Raf-1 activation by stimulating its phosphorylation on serine 43 (Ser43), serine 233 (Ser233), and serine 259 (Ser259). We show here that phosphorylation of all three sites blocks Raf-1 binding to Ras.GTP in vivo and that cAMP stimulates binding of 14-3-3 proteins to Ser233 and Ser259. We also show that Raf-1 and protein kinase A (PKA) form a complex in vivo that is disrupted by cAMP and that ablation of PKA by use of small interfering RNA blocks phosphorylation by cAMP. The ability of PKA to block Raf-1 activation is ablated by the PKA inhibitor H89. These studies suggest that Raf-1 and cAMP form a signaling complex in cells. Upon activation of PKA, Raf-1 is phosphorylated and 14-3-3 binds, blocking Raf-1 recruitment to the plasma membrane and preventing its activation.  相似文献   

3.
BACKGROUND: Kinase Suppressor of Ras (KSR) is a conserved component of the Ras pathway that acts as a molecular scaffold to facilitate signal transmission through the MAPK cascade. Although recruitment of KSR1 from the cytosol to the plasma membrane is required for its scaffolding function, the precise mechanism(s) regulating the translocation of KSR1 have not been fully elucidated. RESULTS: Using mass spectrometry to analyze the KSR1-scaffolding complex, we identify the serine/threonine protein phosphatase PP2A as a KSR1-associated protein and show that PP2A is a critical regulator of KSR1 activity. We find that the enzymatic core subunits of PP2A (PR65A and catalytic C) constitutively associate with the N-terminal domain of KSR1, whereas binding of the regulatory PR55B subunit is induced by growth factor treatment. Specific inhibition of PP2A activity prevents the growth factor-induced dephosphorylation event involved in the membrane recruitment of KSR1 and blocks the activation of KSR1-associated MEK and ERK. Moreover, we find that PP2A activity is required for activation of the Raf-1 kinase and that both Raf and KSR1 must be dephosphorylated by PP2A on critical regulatory 14-3-3 binding sites for KSR1 to promote MAPK pathway activation. CONCLUSIONS: These findings identify KSR1 as novel substrate of PP2A and demonstrate the inducible dephosphorylation of KSR1 in response to Ras pathway activation. Further, these results elucidate a common regulatory mechanism for KSR1 and Raf-1 whereby their localization and activity are modulated by the PP2A-mediated dephosphorylation of critical 14-3-3 binding sites.  相似文献   

4.
The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.  相似文献   

5.
Although Rafs play a central role in signal transduction, the mechanism(s) by which they become activated is poorly understood. Raf-1 activation is dependent on the protein's ability to bind Ras, but Ras binding is insufficient to activate Raf-1 tyrosine phosphorylation to this Ras-induced activation, in the absence of an over-expressed tyrosine kinase. We demonstrate that Raf-1 purified form Sf9 cells coinfected with baculovirus Ras but not Src could be inactivated by protein tyrosine phosphatase PTP-1B. 14-3-3 and Hsp90 proteins blocked both the tyrosine dephosphorylation and inactivation of Raf-1, suggesting that Raf-1 activity is phosphotyrosine dependent. In Ras-transformed NIH 3T3 cells, a minority of Raf-1 protein was membrane associated, but essentially all Raf-1 activity and Raf-1 phosphotyrosine fractionated with plasma membranes. Thus, the tyrosine-phosphorylated and active pool of Raf-1 constitute a membrane-localized subfraction which could also be inactivated with PTP-1B. By contrast, B-Raf has aspartic acid residues at positions homologous to those of the phosphorylated tyrosines (at 340 and 341) of Raf-1 and displays a high basal level of activity. B-Raf was not detectably tyrosine phosphorylated, membrane localized, or further activated upon Ras transformation, even though B-Raf has been shown to bind to Ras in vitro. We conclude that tyrosine phosphorylation is an essential component of the mechanism by which Ras activates Raf-1 kinase activity and that steady-state activated Ras is insufficient to activate B-Raf in vivo.  相似文献   

6.
The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale environments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades.  相似文献   

7.
The minimum structure of the Raf-1 serine/threonine kinase that recognizes active Ras was used to create a green fluorescent fusion protein (GFP) for monitoring Ras activation in live cells. In spite of its ability to bind activated Ras in vitro, the Ras binding domain (RBD) of Raf-1 (Raf-1[51-131]GFP) failed to detect Ras in Ras-transformed NIH 3T3 fibroblasts and required the addition of the cysteine-rich domain (CRD) (Raf-1[51-220]GFP) to show clear localization to plasma membrane ruffles. In normal NIH 3T3 cells, (Raf-1[51-220]GFP) showed minimal membrane localization that was enhanced after stimulation with platelet-derived growth factor or phorbol-12-myristate-13-acetate. Mutations within either the RBD (R89L) or CRD (C168S) disrupted the membrane localization of (Raf-1[51-220]GFP), suggesting that both domains contribute to the recruitment of the fusion protein to Ras at the plasma membrane. The abilities of the various constructs to localize to the plasma membrane closely correlated with their inhibitory effects on mitogen-activated protein kinase kinase1 and mitogen-activated protein kinase activation. Membrane localization of full-length Raf-1-GFP was less prominent than that of (Raf-1[51-220]GFP) in spite of its strong binding to RasV12 and potent activation of mitogen-activated protein kinase. These finding indicate that both RBD and CRD are necessary to recruit Raf-1 to active Ras at the plasma membrane, and that these domains are not fully exposed in the Raf-1 molecule. Visualization of activated Ras in live cells will help to better understand the dynamics of Ras activation under various physiological and pathological conditions.  相似文献   

8.
A central feature of signal transduction downstream of both receptor and oncogenic tyrosine kinases is the Ras-dependent activation of a protein kinase cascade consisting of Raf-1, Mek (MAP kinase kinase) and ERKs (MAP kinases). To study the role of tyrosine kinase activity in the activation of Raf-1, we have examined the properties of p74Raf-1 and oncogenic Src that are necessary for activation of p74Raf-1. We show that in mammalian cells activation of p74Raf-1 by oncogenic Src requires pp60Src to be myristoylated and the ability of p74Raf-1 to interact with p21Ras-GTP. The Ras/Raf interaction is required for p21Ras-GTP to bring p74Raf-1 to the plasma membrane for phosphorylation at tyrosine 340 or 341, probably by membrane-bound pp60Src. When oncogenic Src is expressed with Raf-1, p74Raf-1 is activated 5-fold; however, when co-expressed with oncogenic Ras and Src, Raf-1 is activated 25-fold and this is associated with a further 3-fold increase in tyrosine phosphorylation. Thus, p21Ras-GTP is the limiting component in bringing p74Raf-1 to the plasma membrane for tyrosine phosphorylation. Using mutants of Raf-1 at Tyr340/341, we show that in addition to tyrosine phosphorylation at these sites, there is an additional activation step resulting from p21Ras-GTP recruiting p74Raf-1 to the plasma membrane. Thus, the role of Ras in Raf-1 activation is to bring p74Raf-1 to the plasma membrane for at least two different activation steps.  相似文献   

9.
Recent reports have demonstrated the in vivo association of Raf-1 with members of the 14-3-3 protein family. To address the significance of the Raf-1-14-3-3 interaction, we investigated the enzymatic activity and biological function of Raf-1 in the presence and absence of associated 14-3-3. The interaction between these two molecules was disrupted in vivo and in vitro with a combination of molecular and biochemical techniques. Biochemical studies demonstrated that the enzymatic activities of Raf-1 were equivalent in the presence and absence of 14-3-3. Furthermore, mixing of purified Raf-1 and 14-3-3 in vitro was not sufficient to activate Raf-1. With a molecular approach, Cys-165 and Cys-168 as well as Ser-259 were identified as residues of Raf-1 required for the interaction with 14-3-3. Cys-165 and Cys-168 are located within the conserved cysteine-rich region of the CR1 domain, and Ser-259 is a conserved site of serine phosphorylation found within the CR2 domain. Mutation of either Cys-165 and Cys-168 or Ser-259 prevented the stable interaction of Raf-1 with 14-3-3 in vivo. Consistent with the model in which a site of serine phosphorylation is involved in the Raf-1-14-3-3 interaction, dephosphorylated Raf-1 was unable to associate with 14-3-3 in vitro. Phosphorylation may represent a general mechanism mediating 14-3-3 binding, because dephosphorylation of the Bcr kinase (known to interact with 14-3-3) also eliminated its association with 14-3-3. Finally, mutant Raf-1 proteins unable to stably interact with 14-3-3 exhibited enhanced enzymatic activity in human 293 cells and Xenopus oocytes and were biologically activated, as demonstrated by their ability to induced meiotic maturation of Xenopus oocytes. However, in contrast to wild-type Raf-1, activation of these mutants was independent of Ras. Our results therefore indicate that interaction with 14-3-3 is not essential for Raf-1 function.  相似文献   

10.
Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins.   总被引:11,自引:1,他引:10       下载免费PDF全文
We have identified the beta (beta) isoform of the 14-3-3 family of proteins as an activator of the Raf-1 protein kinase. 14-3-3 was isolated in a yeast two-hybrid screen for Raf-1 kinase domain binding proteins. Purified bovine brain 14-3-3 interacted specifically with both c-Raf-1 and the isolated Raf-1 kinase domain. Association was sensitive to the activation status of Raf-1; 14-3-3 bound to unactivated Raf-1, but not Raf-1 activated by protein kinase C alpha or Ras and Lck. The significance of these interactions under physiological conditions was demonstrated by co-immunoprecipitation of Raf-1 and 14-3-3 from extracts of quiescent, but not mitogen-stimulated, NIH 3T3 cells. 14-3-3 was not a preferred Raf-1 substrate in vitro and did not significantly affect Raf-1 kinase activity in a purified system. However, in cell-free extracts 14-3-3 acted as a Ras-independent activator of both c-Raf-1 and the Raf-1 kinase domain. The same results were obtained in vivo using transfection assays; 14-3-3 enhanced both c-Raf-1- and Raf-1 kinase domain-stimulated expression of AP-1- and NF-kappa B-dependent reporter genes and accelerated Raf-1 kinase domain-triggered differentiation of PC12 cells. We conclude that 14-3-3 is a latent co-activator bound to unactivated Raf-1 in quiescent cells and mediates mitogen-triggered but Ras-independent regulatory effects aimed directly at the kinase domain.  相似文献   

11.
The Raf-1 serine/threonine protein kinase requires phosphorylation of the serine at position 338 (S338) for activation. Ras is required to recruit Raf-1 to the plasma membrane, which is where S338 phosphorylation occurs. The recent suggestion that Pak3 could stimulate Raf-1 activity by directly phosphorylating S338 through a Ras/phosphatidylinositol 3-kinase (Pl3-K)/-Cdc42-dependent pathway has attracted much attention. Using a phospho-specific antibody to S338, we have reexamined this model. Using LY294002 and wortmannin, inhibitors of Pl3-K, we find that growth factor-mediated S338 phosphorylation still occurs, even when Pl3-K activity is completely blocked. Although high concentrations of LY294002 and wortmannin did suppress S338 phosphorylation, they also suppressed Ras activation. Additionally, we show that Pak3 is not activated under conditions where S338 is phosphorylated, but when Pak3 is strongly activated, by coexpression with V12Cdc42 or by mutations that make it independent of Cdc42, it did stimulate S338 phosphorylation. However, this occurred in the cytosol and did not stimulate Raf-1 kinase activity. The inability of Pak3 to activate Raf-1 was not due to an inability to stimulate phosphorylation of the tyrosine at position 341 but may be due to its inability to recruit Raf-1 to the plasma membrane. Taken together, our data show that growth factor-stimulated Raf-1 activity is independent of Pl3-K activity and argue against Pak3 being a physiological mediator of S338 phosphorylation in growth factor-stimulated cells.  相似文献   

12.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

13.
TC21 is a member of the Ras superfamily of small GTP-binding proteins and, like Ras, has been implicated in the regulation of growth-stimulating pathways. Point mutations introduced into TC21 based on equivalent H-Ras oncogenic mutations are transforming in cultured cells, and oncogenic mutations in TC21 have been isolated from several human tumours. The mechanism of TC21 signalling in transformation is poorly understood. While activation of the serine/threonine kinases Raf-1 and B-Raf has been implicated in signalling pathways leading to transformation by H-Ras, it has been argued that TC21 does not activate Raf-1 or B-Raf. Since the Raf-signalling pathway is important in transformation by other Ras proteins, we assessed whether the Raf pathway is important to transformation by TC21. Raf-1 and B-Raf are constitutively active in TC21-transformed cells and the ERK/MAPK cascade is required for the maintenance of the transformed state. We demonstrate that oncogenic V23 TC21, like Ras, interacts with Raf-1 and B-Raf (but not with A-Raf), resulting in the translocation of the Raf proteins to the plasma membrane and in their activation. Furthermore, using point mutations in the effector loop of TC21, we show that the interaction of TC21 with Raf-1 is crucial for transformation.  相似文献   

14.
Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity approximately 2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21(WAF1/CIP1) promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.  相似文献   

15.
Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.  相似文献   

16.
17.
14-3-3 proteins belong to a family of conserved molecules, which play a regulatory role and participate in signal transduction and checkpoint control pathways. 14-3-3 proteins bind phosphoserine-phosphorylated ligands, such as the Raf-1 kinase and Bad, through recognition of the phosphorylated consensus motif, RSXpSXP (where pS is phosphoserine). Recently, a phosphorylation-independent interaction has been reported to occur between 14-3-3 and a small number of proteins, for example the 43 kDa inositol polyphosphate 5-phosphatase, glycoprotein Ib, p75NTR-associated cell-death executor (NADE) and the bacterial ADP-ribosyltransferase toxin exoenzyme S (ExoS). It has been suggested that specific residues of 14-3-3 proteins are required for activation of the bacterial toxin ExoS. An unphosphorylated peptide derived from a phage display library, known as the R18 peptide, and a synthetic peptide derived from ExoS inhibit the interaction between ExoS and 14-3-3. In this report we identify the amino acid sequence on ExoS which is responsible for its specific interaction with 14-3-3, both in vitro and in vivo. In addition, we believe that this interaction is critical for the ADP-ribosylation of an endogenous target, Ras, by ExoS both in vitro and in vivo. Loss of the 14-3-3-binding site on ExoS results in an ExoS molecule that is unable to efficiently inactivate Ras and shows a reduced capacity to change the morphology of infected cells, together with reduced killing activity.  相似文献   

18.
The c-Raf-1 protein kinase plays a critical role in intracellular signaling downstream from many tyrosine kinase and G-protein-linked receptors. c-Raf-1 binds to the proto-oncogene Ras in a GTP-dependent manner, but the exact mechanism of activation of c-Raf-1 by Ras is still unclear. We have established a system to study the activation of c-Raf-1 in vitro. This involves mixing membranes from cells expressing oncogenic H-RasG12V, with cytosol from cells expressing epitope-tagged full-length wild-type c-Raf-1. This results in a fraction of the c-Raf-1 binding to the membranes and a concomitant 10- to 20-fold increase in specific activity. Ras was the only component in these membranes required for activation, as purified recombinant farnesylated K-Ras.GTP, but not non-farnesylated K-Ras.GTP or farnesylated K-Ras.GDP, was able to activate c-Raf-1 to the same degree as intact H-RasG12V membranes. The most potent activation occurred under conditions in which phosphorylation was prohibited. Under phosphorylation-permissive conditions, activation of c-Raf-1 by Ras was substantially inhibited. Consistent with the results from other groups, we find that the activation of c-Raf-1 by Src in vivo occurs concomitant with tyrosine phosphorylation on c-Raf-1, and in vitro, activation of c-Raf-1 by Src requires the presence of ATP. Therefore we propose that activation of c-Raf-1 by Ras or by Src occurs through different mechanisms.  相似文献   

19.
Activation of Raf-1 by Ras requires recruitment to the membrane as well as additional phosphorylations, including phosphorylation at serine 338 (Ser-338) and tyrosine 341 (Tyr-341). In this study we show that Tyr-341 participates in the recruitment of Raf-1 to specialized membrane domains called "rafts," which are required for Raf-1 to be phosphorylated on Ser-338. Raf-1 is also thought to be recruited to the small G protein Rap1 upon GTP loading of Rap1. However, this does not result in Raf-1 activation. We propose that this is because Raf-1 is not phosphorylated on Tyr-341 upon recruitment to Rap1. Redirecting Rap1 to Ras-containing membranes or mimicking Tyr-341 phosphorylation of Raf-1 by mutation converts Rap1 into an activator of Raf-1. In contrast to Raf-1, B-Raf is activated by Rap1. We suggest that this is because B-Raf activation is independent of tyrosine phosphorylation. Moreover, mutants that render B-Raf dependent on tyrosine phosphorylation are no longer activated by Rap1.  相似文献   

20.
The serine/threonine kinase Raf-1 is an essential component of the MAPK cascade. Activation of Raf-1 by extracellular signals is initiated by association with intracellular membranes. Recruitment of Raf-1 to membranes has been reported to be mediated by direct association with Ras and by the phospholipase D product phosphatidic acid (PA). Here we report that insulin stimulation of HIRcB fibroblasts leads to accumulation of Ras, Raf-1, phosphorylated MEK, phosphorylated MAPK, and PA on endosomal membranes. Mutations that disrupt Raf-PA interactions prevented recruitment of Raf-1 to membranes, whereas disruption of Ras-Raf interactions did not affect agonist-dependent translocation. Expression of a dominant-negative Ras mutant did not prevent insulin-dependent Raf-1 translocation, but inhibited phosphorylation of MAPK. Finally, the PA-binding region of Raf-1 was sufficient to target green fluorescent protein to membranes, and its overexpression blocked recruitment of Raf-1 to membranes and disrupted insulin-dependent MAPK phosphorylation. These results indicate that agonist-dependent Raf-1 translocation is primarily mediated by a direct interaction with PA and is independent of association with Ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号