首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of metal contamination on the marine alga Tetraselmis suecica was investigated at physiological and ultrastructural levels. For this analysis, the growth response of this microalga was studied after the addition of various concentrations of heavy metals (Cd, Cu). The concentration corresponding to 50% growth inhibition (IC50) and the number of days per cell cycle (Td) studied, revealed that the toxic effects of copper are heavier than those of cadmium. In the case of copper contamination, the Td grows with increasing metal concentration in the culture medium, while it remains unchanged during the cadmium contamination. The toxicity of cadmium, only observed in the latency phase of growth, suggests an adaptation phenomenon of T suecica to this metal. Ultrastructural changes in response to pollutants were investigated; copper induced cytoplasmic vacuolisation, organelle changes, appearance of cells with multilayered cell walls and excretion of organic matter. In the case of cadmium contamination, ultrastructural changes mainly affected the osmiophilic vesicles, of which both number and volume increased with increasing metal concentration in the culture medium. The results of X-ray microanalysis revealed that Cd and Cu were strongly present in excreted organic matter and osmiophilic vesicles. The latter can be excreted during cell division, thus participating in detoxification processes. Intracellular cadmium incorporation proved that some toxic effects of this metal are a result of interaction with endogenous cellular constituents. In the case of copper contamination, the presence of copper in walls of a multilayered cell suggests that these structures constitute an additionnal adsorbing area for this element, reducing metal free concentration in the medium. Mechanisms of metal detoxification of Tetraselmis suecica are discussed.  相似文献   

2.
Soybean [Glycine max (Linn.) Merrill] and mung bean [Vigna radiate (Linn.) Wilczek] plants were challenged with 5 kinds of heavy metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and mercury (Hg)] in a hydroponic system. We applied 4 different metal treatments to study the effects of heavy metals on several physiological and biochemical parameters in these species, including root length, heavy metal concentrations and allocation in different organs, superoxide dismutase, catalase, and peroxidase activities, the content of malondialdehyde (MDA), protein and chlorophyll. The data showed that the growth of the roots of soybean and mung bean was equally sensitive to external Hg concentrations. Soybean was more sensitive to external Cd concentrations, and mung bean was more sensitive to external Cr, Cu and Pb concentrations. Normal concentrations of heavy metal would not cause visible toxic symptoms, and a low level of heavy metal even slightly stimulated the growth of plants. With the rise of heavy metal concentration, heavy metal stress induces an oxidative stress response in soybean and mung bean plants, characterized by an accumulation of MDA and the alternation pattern of antioxidative enzymes. Meanwhile, the growth of plants was suppressed, the content of chlorophyll decreased and leaves showed chlorosis symptoms at high metal concentrations.  相似文献   

3.
The effects of cadmium (Cd(2+)), mercury (Hg(2+)), lead (Pb(2+)), copper (Cu(2+)) and nickel (Ni(2+)) on the glutathione (GSH)-redox cycle were assessed in CHO-K1 by the neutral red uptake inhibition (NR) assay (NR(6.25), NR(12.5) and NR(25)). Mercury proved to be the most and lead the least toxic of the metals tested. The effects on GSH content and intracellular specific activities of enzymes involved in the GSH-redox balance were measured after a 24-h exposure. Total GSH content increased significantly in cultures exposed to the lowest metal concentration assayed (NR(6.25)), but fell to below control values when exposed to concentrations equivalent to NR(25). Oxidised glutathione content dropped significantly at NR(6.25), while somewhat higher values were obtained for cultures exposed to higher doses. Glutathione peroxidase (Gpx) activities were 1.2-, 1.5-, 1.6-, 2.0- and 2.5-fold higher than untreated controls for cadmium, copper, mercury, nickel and lead, respectively, at concentrations equivalent to NR(6.25). Gpx activity declined at metal concentrations equivalent to NR(12.5) and NR(25). Glutathione reductase activity remained almost unchanged except at low doses of mercury, nickel and lead. Glutathione-S-transferase activity decreased at rising metal concentrations. The results suggest that a homeostatic defence mechanism was activated when cells were exposed to doses equivalent to NR(6.25) while the ability of the cells to respond weakened as the dose increased. A close relationship was also observed between metal cytotoxicity, total GSH content and the dissociation energy of the sulphur-metal bonds. These facts confirm the involvement of antioxidant defence mechanisms in the toxic action of these ions.  相似文献   

4.
A comprehensive understanding of the uptake, tolerance, and transport of heavy metals by plants will be essential for the development of phytoremediation technologies. In the present paper, we investigated accumulation, tissue and intracellular localization, and toxic effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in three aquatic macrophytes (the angiosperms Lemna minor and Elodea canadensis, and the moss Leptodictyum riparium). We also tested and compared their capacity to absorb heavy metal from water under laboratory conditions. Our data showed that all the three species examined could be considered good bioaccumulators for the heavy metals tested. L. riparium was the most resistant species and the most effective in accumulating Cu, Zn, and Pb, whereas L. minor was the most effective in accumulating Cd. Cd was the most toxic metal, followed by Pb, Cu, and Zn. At the ultrastructural level, sublethal concentrations of the heavy metals tested caused induced cell plasmolysis and alterations of the chloroplast arrangement. Heavy metal removal experiments revealed that the three macrophytes showed excellent performance in removing the selected metals from the solutions in which they are maintained, thus suggesting that they could be considered good candidates for wastewaters remediation purpose.  相似文献   

5.
The effects of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb) and zinc (Zn) on the biotransformation of organic acids (acetate, propionate and butyrate) and H2 were assessed in serum-bottle microcosms. Experiments were performed over a range of metal concentrations (20–200 mg/1) using biomass from an anaerobic bioreactor fed continuously with ethanol distillery waste as inoculum. In general, the added metals inhibited the biotransformation of organic acids with increasing metal concentration. However, the extent of inhibition varied for the different biotransformations and for the different metals tested. For example, the concentration of CuCl2 effecting a 50% reduction in the rate constant for biotransformation of acetate, propionate and butyrate was 60, 75 and 30 mg/1, respectively. Cu and Cr (VI) were the most inhibitory metals in organic acid transformation, whereas Pb was the least toxic. The rate of biotransformation of acetate was reduced by half at Cu and Cr concentrations of 60 and 40 gm/1 respectively, whereas Cd, Pb, and Zn concentrations of 160 to 200 mg/l had little effect. The activities of hydrogenotrophic methanogens were much less affected by the same metals and metal concentrations.  相似文献   

6.
7.
Human peripheral blood lymphocytes have the capacity to produce metallothioneins (MTs) as a protective response to cadmium exposure. To define the range of metal species inducing lymphocyte MTs, cellular proteins synthesized after exposure to each of 11 heavy metals were analyzed by gel electrophoresis. Toxic metals such as cadmium, mercury and silver were found to induce thioneins (apoproteins of MTs) at relatively low concentrations (maximum at approximately 10 microM), whereas less toxic metals such as zinc, copper and nickel were inductive at relatively high concentrations (maximum at approximately 200 microM). Tin, lead, iron, cobalt, and manganese did not induce thioneins. The heavy metal specificity of MT induction in the lymphocyte resembles that in the liver, and the regulatory mechanism of MT production seems to be similar in both of these tissues. In the cells exposed to highly toxic metals such as cadmium and mercury, expression of cytotoxicity (represented by decline of cysteine uptake) was remarkable at the metal concentrations higher than those saturating thionein induction, supporting the protective role of MTs against heavy metals.  相似文献   

8.
The effects of heavy metals, both toxic (Pb, Cd) and essential (Cu, Zn) on the ultrastructure and the induction of Heat Shock Protein 70 (HSP70) have been studied in the aquatic moss Leptodictyum riparium Hedw. In vitro cultured L. riparium was treated with different heavy metals, both toxic, as cadmium or lead; and essential microelements such as Copper or Zinc concentrations ranging from 10(-3) to 10(-6) M to investigate both ultrastructural damage and HSP induction. TEM observations showed that sub-lethal concentrations of heavy metals caused only slight changes, largely localized in the chloroplasts. Among all the heavy metals tested, cadmium caused the most severe modifications. Heavy metals caused the decrease of the soluble protein content and the enhancement of proteins reacting versus HSP70 antibodies, suggesting that molecular chaperons might be involved in the resistance to toxic effects of lead, cadmium, copper and zinc. Therefore, the induction of HSP70 in L. riparium would confer a higher resistance to pollutants under stressful conditions lethal for other mosses and higher plant species. These results suggest that the moss L. riparium can tolerate heavy metals stress without incurring severe cellular/subcellular damage. Therefore it can be used as a useful indicator of heavy metals accumulation.  相似文献   

9.
Keltjens  W.G.  van Beusichem  M.L. 《Plant and Soil》1998,203(1):119-126
Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil is inadequate when based only on chemical soil analysis. The use of biomarkers such as phytochelatins (PC), non-protein thiols specifically induced in plants upon exposure to heavy metals, may be an additional tool or diagnostic criterion in heavy metal research and in practice. In the present work, Cu and Cd uptake and induction of PC synthesis are studied with hydroponically grown maize and wheat plants exposed to mixtures of the two metals. We observed a close positive relationship between the concentrations of Cd and PC in the plant shoot material. A decreased shoot concentration of Cd after addition of Cu, due to metal competition at common root absorption sites, coincided with lower shoot PC levels. Also differences in metal uptake and xylary metal transport among the two plant species were reflected in corresponding differences in PC concentration. The observed direct relationship between shoot PC concentration and the degree of metal-induced growth inhibition makes the use of PC promising for the purpose tested for.  相似文献   

10.
The induction of defense systems against metal exposure was investigated in 48 wild-growing fruiting bodies of the king bolete (Boletus edulis) from two areas polluted with several transition metals from smelters, as well as five reference areas. To determine the degree of metal exposure, cadmium (Cd), zinc (Zn), and copper (Cu) were determined in caps of fruiting bodies by atomic absorption spectrophotometry (AAS), whereas mercury (Hg) was determined by cold vapor atomic fluorescence spectrometry (CVAFS). Caps were analyzed further with respect to relative activities of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as concentrations of total glutathione (GSHTOT = GSH + GSSG) and relative concentrations of heat shock protein 70 kDa (HSP70). The results showed that concentrations of the four metals, as well as SOD, CAT and HSP70, were significantly elevated in the exposed group (Mann-Whitney, P < or = 0.001). In contrast, GSHTOT was significantly lowered in the exposed group (P < or = 0.05). Significant positive correlations were established between concentrations of Cd, Zn, Hg, or Cu and activities of SOD (Spearman's P < or = 0.01 for the association between SOD and Cd, P < or = 0.001 for all other metal exposure parameters), CAT (P < or = 0.001 for all exposure parameters), or expression of HSP70 (P < or = 0.001 for all exposure parameters). Significant negative correlations were found between total GSH and Cd (P < or = 0.001), Zn (P < or = 0.001), or Hg (P < or = 0.05). We conclude that antioxidant enzymes are induced in wild-growing B. edulis exposed to environmentally relevant concentrations of potentially toxic transition metals; whereas the net consumption of GSH that occurs with increasing metal exposure may reflect GSH consumption by mechanisms of metal detoxification. Finally, the induction of HSP70 suggests that the antioxidant response and the mechanisms in which GSH is consumed are insufficient for protection against the harmful effects of severe metal stress.  相似文献   

11.
Exposure to toxic metals during the prenatal period carries the potential for adverse developmental effects to the fetus, yet such exposure remains largely unmonitored in the United States. The aim of this study was to assess maternal exposure to four toxic metals (arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb)) in a cohort of pregnant women in North Carolina. We analyzed blood samples submitted to the North Carolina Department of Health and Human Services for blood typing to assess toxic metal levels in pregnant women (n = 211) across six North Carolina counties. Whole blood metal concentrations were measured by inductively coupled plasma mass spectrometry. The association between maternal characteristics, including county of residence, age, and race, and metal exposure was analyzed using multiple linear regression analysis. A large fraction of the blood samples showed detectable levels for each of the four metals. Specifically, As (65.7%), Cd (57.3%), Hg (63.8%), and Pb (100%) were detected in blood samples. Moreover, compared with adult females participating in the Fourth National Report on Human Exposure to Environmental Chemicals and guidelines for pregnant women, some women in the sample population exceeded benchmark levels of Cd, Hg, and Pb. Evidence from this pilot study indicates that pregnant women in North Carolina are exposed to As, Cd, Hg, and Pb and suggests that factors related to maternal county of residence and race may impact maternal exposure levels. As increased levels of one or more of these metals in utero have been associated with detrimental developmental and reproductive outcomes, further study is clearly warranted to establish the impacts to newborns.  相似文献   

12.
武汉市蔬菜重金属污染现状的调查与评价   总被引:3,自引:0,他引:3  
通过对武汉市6种蔬菜的供食部位及所对应的土壤中重金属Hg(汞)、Cu(铜)、Pb(铅)、Cd(镉)、Cr(铬)、Zn(锌)、As(砷)含量及分布特征进行了检测,结果表明:Pb、Cr是武汉市蔬菜中主要的污染元素;Hg、Cd只在个别叶菜类上超标;Zn、Cu、As无超标样。在所时应的土样中,普遍存在污染的是Cd,其它6种重金属元素均未超标。  相似文献   

13.
The aim of this paper was to determine the level of five elements, two essential for life [zinc (Zn) and copper (Cu)] and three distinctly toxic [lead (Pb), cadmium (Cd), and mercury (Hg)], in four types of biological material in bones of the dog Canis lupus familiaris. The experiment was carried out on bones from the hip joints of dogs. The samples of cartilage, compact bone, spongy bone, and cartilage with adjacent compact bone came from 26 domestic dogs from northwestern Poland. Concentrations of Cu, Zn, Pb, and Cd were determined by ICP-AES (atomic absorption spectrophotometry) in inductively coupled argon plasma, using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the examined bone material from the dog, the greatest concentrations (median) were observed for Zn and the lowest for Hg (98 mg Zn/kg and 0.0015 mg Hg/kg dw, respectively). In cartilage and spongy bone, metal concentrations could be arranged in the following descending order: Zn > Pb > Cu > Cd > Hg. In compact bone, the order was slightly different: Zn > Pb > Cd > Cu > Hg (from median 70 mg/kg dw to 0.002 mg/kg dw). The comparisons of metal concentrations between the examined bone materials showed distinct differences only in relation to Hg: between concentrations in spongy bone, compact bone, and in cartilage, being greater in cartilage than in compact bone, and lower again in spongy bone.  相似文献   

14.
The flagellate alga Pavlova viridis Tseng was investigated in the laboratory for accumulation of the heavy metals, silver, cadmium, cobalt, copper, mercury, nickel and lead. The cultures were grown in an artificial seawater medium mixed with the individual metals at different concentrations. Based on data from the controls, the baseline metal concentrations in P. viridis were shown to be in an order of Cu > Pb > Co > Cd > Ni > Ag > Hg. In the experimental groups, the seven metals displayed different isotherm equilibrium patterns and the metal uptake capacity of the alga was Ni > Pb > Co > Hg > Cu > Cd > Ag at equilibrium. When assessed using the bioconcentration factors, metal accumulation by P. viridis was demonstrated to be the most efficient at a concentration of 0.001 mg L-1 for Ag, Cd and Co, and at 0.01 mg L-1 for Cu, Hg, Ni and Pb. This study suggests that P. viridis can be a source of mineral supplements in mariculture. The alga is not, however, recognized as an effective agent for removing heavy metals from wastewater. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The toxic effects of cadmium (Cd) and copper (Cu) on cellular metabolism and cell morphology were investigated in isolated hepatopancreas cells from the Roman snail (Helix pomatia). Cell viability was unaffected during 1 h of incubation with 100 microM Cd, but was significantly reduced from 93% in controls to 87% and 85% with 100 microM Cu and 500 microM Cd, respectively. The adverse effect of 500 microM Cd on cell viability was not observed in cells isolated from Cd pretreated snails. Oxygen consumption remained constant in the presence of 100 microM Cu but was inhibited by 38% after 1 h of exposure to 500 microM Cd. Hepatopancreas cells showed enhanced formation of reactive oxygen species when exposed to 100 microM Cu, but not in the presence of Cd. Morphologically, an increase in cell volume of Cd-exposed cells was noted, while cell membrane bleb formation was induced by both metals. The latter may have been induced by metal effects on the actin filamentous network of the cells which showed distinct actin-staining within the blebs at the cell surface. Overall, our data indicate that both Cd and Cu are acutely toxic for hepatopancreas cells form the Roman snail with Cu being more toxic than Cd.  相似文献   

16.
&#  &#  &#  &#  &#  &#  &#  &#  H. A. C. C. PERERA  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(5):861-868
为了解三峡水库蓄水后鱼体重金属富集现状及其潜在的生态风险和食品安全, 测定了三峡水库上、中、下游不同年龄组铜鱼(Coreius heterodon)和圆口铜鱼(C. guichenoti)肌肉和肝脏中重金属含量。利用等离子吸收光谱法、石墨炉原子吸收光谱法、原子荧光光谱法检测样品中Cu、Zn、Cr、Pb、Cd、Hg、As 等 7种重金属含量。结果表明: 7 种重金属在铜鱼和圆口铜鱼体内的含量水平基本一致, 重金属在铜鱼和圆口铜鱼肌肉中含量大小均为Zn Cu Cr Hg AsPb Cd, 在铜鱼肝脏中含量大小为Zn Cu Pb Cd Cr As Hg, 而在圆口铜鱼肝脏中含量大小为Zn Cu Pb Cr Cd Hg As。铜鱼和圆口铜鱼肝脏中重金属含量显著高于肌肉(P0.05)。两种鱼类间大部分重金属在库区上、中、下游无显著差异(P 0.05)。铜鱼和圆口铜鱼肌肉(可食用部分)中7 种重金属含量均未超过国家食品安全卫生标准, 属于安全食用范围;肝脏中除Cd 和Pb 外的其他元素含量均未超过国家标准。相关结果反映了三峡水库175 m 蓄水后底栖土著经济鱼类重金属的污染状况, 对了解该地区水产品质量安全状况及水产品安全评价提供了参考依据。    相似文献   

17.
Soil heavy metal contamination is a major environmental concern, and health risk associated with heavy metals is not fully explored. A combination of spatial analysis and Monte Carlo simulation was successfully used to identify the possible sources and health risk of cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), and copper (Cu) in soils collected from a rapidly developing region of China. It was found that mean concentrations of Cd (0.17 mg/kg ), As (8.74 mg/kg ), Hg (0.15 mg/kg ), Pb (27.28 mg/kg ), and Cu (33.32 mg/kg ) were greater than the soil background values. Accumulation and spatial variability of heavy metals were significantly affected by anthropogenic activities and soil properties. The risk assessment indicated that non-carcinogenic risk was not significant. However, 95% of the total cumulative carcinogenic risk of children was greater than 1E-05, implying high potential carcinogenic risk with As and Pb representing the major contributors. Ingestion of heavy metals in the soils was the main exposure pathway compared with the inhalation and the dermal exposure. Concentration of heavy metals in the soils, particulate emission factor, and dermal exposure ratio were the major parameters affecting health risk. This study highlights the importance of assessment of soil direct exposure health risk in studying heavy metal exposures.  相似文献   

18.
Under present environmental conditions, an increase in pollution owing to metals such as cadmium (Cd), lead (Pb), and methylmercury (MeHg) must be expected. The resulting effects would be seen particularly in the food chain. The daily intake of toxic metals in various parts of the world is different and depends on both the dietary habits and the concentration in foodstuffs. Oral ingestion of these toxic metals perturbs the metabolism of essential elements, especially zinc (Zn), copper (Cu), iron (Fe), and selenium (Se). The elemental composition of body tissues and fluids is an indicator of the nutritional and pathological status of humans. This review will describe the dietary intake and gut absorption of essential and toxic elements. Furthermore, it will discuss threshold values, toxic effects in relation to body burden of toxic metals, the biological indices of exposure, and the interaction between toxic and essential elements. The overall ratio of Cu, Zn, Fe, and Se concentration to Cd in the human kidney is the lowest in comparison to Hg and Pb. Increased kidney copper and urinary losses may be common denominators in the manifestation of renal toxicity induced by heavy metals. Factors affecting availability and loss of copper should be identified and measured. The critical kidney concentration for Cd, Pb, and MeHg should be revised in relation to essential elements.  相似文献   

19.
20.
The influence of the following heavy metals, copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), on haemocytes of the house fly Musca domestica L. was studied under laboratory conditions. House fly larvae were exposed to low or high, semi-lethal concentrations of metals. These particular metals were selected because they are present in polluted environments in Poland. In addition, we studied expression of the stress proteins HSP70 and HSP72 in haemocytes collected from larvae that had been exposed to heavy metal. The obtained results showed changes in haemocytes morphology and phagocytotic plasticity in the experimental flies in comparison to control. The number of prohaemocytes, regarded as stem cells, increased, while granulocytes, responsible for phagocytosis, decreased. However, we have not detected any clear changes in expression of HSP70 or HSP72 in flies treated with low or high concentrations of the heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号