首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals.  相似文献   

2.
The arrangement of muscle spindles in m. ext. long. dig. IV has been examined by microdissection. It is confirmed that spindle systems generally appear to consist of individual receptors. Stimulation effects of fast motor fibres (conduction velocities greater than 12 m/sec) on the spindles of the same muscle were studied. Receptors were isolated with their nerves and the appropriate spinal roots, the latter ones were used for stimulating efferent fibres and recording sensory discharges. Single shocks to the ventral root filaments caused afferent responses ranging from a single action potential to a train of impulses. During repetitive stimulation (train of stimuli at frequency of 10 to 150/sec) a marked increase in afferent activity was found. Afferent activity could be driven by the frequency of stimuli ("driving") and the stimulus/action potentials ratio varied from 1:1 to 1:3 or more. The rate of sensory discharge depended on the frequency of stimuli: the maximum effect, was attained at 30 to 50 stimuli/sec and, in the most responsive receptors, up to 80 stimuli/sec. Slight increases of the initial lengths of the receptors caused facilitation of sensory responses to motor stimulation. Moreover, impairing effects, which appear during sustained or high-frequency stimulation, possibly related to fatigue in intrafusal neuromuscular transmission, could be relieved by increasing the initial length. The repetitive stimulation of fast fusimotor fibres increased both dynamic and static responses and also raised the afferent activity after a period of stretching, when usually a depression occurs; these effects varied according to the preparation, its initial tension and the frequency of stimulation. The main feature of the examined motor fibres, when stimulated, is the constant excitatory action on muscle spindle static response. Results are discussed. It is suggested that the different characteristics of intrafusal muscle fibres, the receptor initial tension and the frequency of motor units discharges, may together affect muscle spindles static or dynamic performance.  相似文献   

3.
The state of human spinal inhibition responses under normo- and hyperbaric pressure (6.5 ata) was comparatively studied. The paired stimulation method has been used to estimate resetting of tested monosynaptic reflex in the 20-900 ms interval of paired stimulation at rest or against the background of supraspinal modulation of spinal reflective processes (Jendrassik manoeuvre, voluntary plantar flexion) were studied. The depression of inhibition reactions under hyperbaric pressure identical to that during the supraspinal modulation under normobaric conditions is shown. It is supposed that these influences on spinal reflection processes are caused by the same neuronal mechanism.  相似文献   

4.
Triple stimulation technique (TST) has previously shown that transcranial magnetic stimulation (TMS) fails to activate a proportion of spinal motoneurons (MNs) during motor fatigue. The depression in size of the TST response, but no attenuation of the conventional motor-evoked potential, suggested increased probability of repetitive spinal MN activation during exercise, even if some MNs failed to discharge by the brain stimulus. Here we used a modified TST [quadruple stimulation (QuadS) and quintuple stimulation (QuintS)] to examine the influence of fatiguing exercise on second and third MN discharges after a single TMS in healthy subjects. This method allows an estimation of the percentage of double and triple discharging MNs. Following a sustained contraction of the abductor digiti minimi muscle at 50% maximal force maintained to exhaustion, the size of QuadS and QuintS responses increased markedly, reflecting that a greater proportion of spinal MNs was activated two or three times by the transcranial stimulus. The size of QuadS responses did not return to precontraction levels during 10-min observation time, indicating long-lasting increase in excitatory input to spinal MNs. In addition, the postexercise behavior of QuadS responses was related to the duration of the contraction, pointing to a correlation between repeated activation of MNs and the subject's ability to maintain force. In conclusion, the study confirmed that an increased fraction of spinal MNs fire more than once in response to TMS when the muscle is fatigued. Repetitive MN firing may provide an adaptive mechanism to maintain motor unit activation and task performance during sustained voluntary activity.  相似文献   

5.
Stability of depressor responses evoked by long-lasting continuous and intermittent stimulation of the aortic nerve was studied in rabbits anaesthetized with urethane. Continuous stimulation produces blood pressure falls whose stability at low frequencies (1-10 cycles/sec) ranges from 91 to 86%. With rise of the stimulation frequency stability is decreased : at 500 cycles/sec, it amounts to 19%. Intermittent stimulation consisting in switching excitation on and off every 10 sec increases stability of depressor responses and at 500 cycles/sec, it is significantly higher than stability of effects produced by continuous stimulation. Following transection of aortic nerves, stability is increased at all frequencies of continuous stimulation and at all but the lowest frequency of intermittent stimulation. Vagotomy performed after section of the aortic nerves does not significantly affect the changes in stability observed after severing the aortic afferents. It is suggested that at high frequencies of stimulation, stability of depressor responses is reduced by homosynaptic depression. During intermittent stimulation, its effect is counteracted by post-tetanic changes occurring at intervals when the stimulation is switched off. The increase in stability after section of aortic nerves is probably related to its effect on excitability of the vasomotor centres.  相似文献   

6.
The dorsal cord, dorsal root, and focal potentials in response to peripheral nerve stimulation were investigated in rats with local depression of inhibition in the left or right half of the lumbar segments produced by the action of tetanus toxin. The investigation was carried out at the stage of poisoning when excitation of the neuron population with disturbed inhibition caused generalized excitation of spinal and bulbar motoneurons. Experiments on spinal animals showed that if a cutaneous nerve is stimulated on the side affected by the toxin these responses have a greater amplitude and a much longer duration than those evoked by stimulation of the opposite nerve or responses in healthy rats. The maximal increase in amplitude and duration of the negative component of the focal potential corresponding to the time of the increased P wave of the dorsal cord potential was found in the ventral quadrant on the side affected by the toxin. Besides evoked focal potentials, spontaneous rhythmic negative waves also were recorded in this area. The mechanisms of spread of seizure activity from the focus of depressed inhibition are discussed and the structures generating spreading seizure activity are identified.  相似文献   

7.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

8.
Sciatic nerve lesion in newborn rats is known to cause degeneration of a large number of axotomized motoneurones and spinal ganglion cells. Some of the surviving motoneurones exhibit abnormal firing properties and the projection pattern of central terminals of sensory neurones is altered. We report here on long-term changes in spinal cord reflexes in adult rats following neonatal nerve crush. In acutely spinalized and anaesthetized adult rats 4-6 months old in which the sciatic nerve had been crushed on one side at birth, the tibial nerve, common peroneal nerve or sural nerve were stimulated on the reinnervated and control side and reflex responses were recorded from the L5 ventral spinal roots. Ventral root responses (VRRs) to tibial and peroneal nerve stimulation on the side of the nerve lesion were significantly smaller in amplitude representing only about 15% of the mean amplitude of VRRs on the control side. The calculated central delay of the first, presumably monosynaptic component of the VRR potential was 1.6 ms on the control side while the earliest VRR wave on the side of the nerve lesion appeared after a mean central latency of 4.0 ms that seems too long to be of monosynaptic origin. These results suggest that neonatal sciatic nerve injury markedly alters the physiological properties and synaptic connectivity in spinal cord neurones and causes a marked depression of spinal cord responses to peripheral nerve stimulation.  相似文献   

9.
An assemblage of individual motoneurons constituting a synthetic motoneuron pool has been studied from the standpoint of relating monosynaptic reflex responses to frequency of afferent stimulation. Intensity of low frequency depression is not a simple function of transmitter potentiality. As frequency of stimulation increases from 3 per minute to 10 per second, low frequency depression increases in magnitude. Between 10 and approximately 60 per second low frequency depression apparently diminishes and subnormality becomes a factor in causing depression. At frequencies above 60 per second temporal summation occurs, but subnormality limits the degree of response attainable by summation. At low stimulation frequencies rhythm is determined by stimulation frequency. Interruptions of rhythmic firing depend solely upon temporal fluctuation of excitability. At high frequency of stimulation rhythm is determined by subnormality rather than inherent rhythmicity, and excitability fluctuation leads to instability of response rhythm. In short, whatever the stimulation frequency, random excitability fluctuation is the factor disrupting rhythmic response. Monosynaptic reflex response latency is stable during high frequency stimulation as it is in low frequency stimulation provided a significant extrinsic source of random bombardment is not present. In the presence of powerful random bombardment discharge may become random with respect to monosynaptic afferent excitation provided the latter is feeble. When this occurs it does so equally at low frequency and high frequency. Thus temporal summation is not a necessary factor. There is, then, no remaining evidence to suggest that the agency for temporal summation in the monosynaptic system becomes a transmitting agency in its own right.  相似文献   

10.
We recorded the spike activity from spinal neurons In rats with a model of neuropathy after ligation of then. ishiadicus. A significantly increased frequency of background discharges and responsiveness to nonnoxious stimuli were observed in dorsal horn wide-dynamic range (convergent) neurons in a group of allodynic rats, as compared with non-allodynic and intact rats. Spinal cord stimulation (SCS) Induced a significant depression of both the principal responses and afterdischarges in allodynic rats. The frequency of background discharges was markedly decreased in approximately one third of the neurons. These effects outlasted SCS by about 10 rain. The moderating effect of SCS is considered a result of activation of distinctly different and complementary mechanisms: segmental and transsupraspinal. The former appears to be the most important in allodynic animals.  相似文献   

11.
Wang RP  Lin Q  Li QJ  Lu GW 《生理学报》2000,52(5):407-410
用微透析方法在麻醉麻痹大鼠的脊髓局部应用一氧化氮(NO)供体亚硝基铁氰化钠(sodium nitroprusside,SNP),以碳丝微电极在腰膨大处行细胞外记录,观察NO对机械刺激大鼠后足部皮肤引起的诱发反应和自发反应的影响。脊深层神经元透析1μmol/L SNP,10~12min后,非伤害性机械刺激诱发的反应增强,伤害性机械刺激诱发的反应减弱;透析20~30min后,伤害性和非伤害性机械刺激诱  相似文献   

12.
In acute experiments on urethane-anaesthetized cats, motor responses of different parts of the colon (the proximal and descending parts as well the rectum) to microstimulation of neurons of the sacral parasympathetic nucleus (SPN) were investigated. The stimulation was carried out by rectangle pulses of current with intensity 100-1000 microA, pulse width 0.5 ms and frequency 10 Hz. It was shown that the microstimulation of the SPN neurons located within SI-SIII segments of spinal cord induced mainly the excitatory motor responses of all regions of the colon. However the most pronounced responses were obtained when the neurons of SII segments were stimulated. On the whole, the responses of rectum to stimulation were greater than responses of the proximal part of the colon. Our results suggest that the SPN neurons located within SII segments play the most important role in reflex control of colon motility.  相似文献   

13.
A focus of evoked potentials and the largest number of spike responses of single units to tegmental stimulation were found in immobilized turtles (Emys orbicularis), lightly anesthetized with chloralose, in the ventral region of the thalamus, which is a heterosensory zone of predominantly somatosensory modality. Incomplete separation of lateral- and medial-tegmental projections between the dorsal and ventral portions of the ventral thalamic region respectively was discovered. Tegmental stimulation, coinciding with or preceding electrodermal or photic stimulation, causes predominant depression of somatic single unit responses, but has less effect on visual responses. The possibility of comparison of tegmento-thalamic systems in reptiles and mammals is discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 165–174, March–April, 1980.  相似文献   

14.
Synaptic responses of neurons in segments C2 and C3 to stimulation of locomotor points in the medulla or midbrain were recorded extracellularly in mesencephalic cats. Neurons generating responses with an index of 0.4–0.6 to stimulation with a frequency of 2 Hz maintained this same index at frequencies of 20–60 Hz. The discharge index of many neurons during stimulation at 2 Hz was low, and it increased to 0.4–0.6 when high-frequency stimulation was used. More than half of the cells were excited by stimulation of both ipsilateral and contralateral locomotor points; one-quarter of the neurons responded to stimulation of locomotor points in both medulla and midbrain. The cells studied were located 1.8–4.2 mm from the dorsal surface of the spinal cord. The mean latencies of responses with an index of not less than 0.5 lay within the range 2–30 msec, with a mode of 2–8 msec. Considerable fluctuations of latent period were observed for long-latency responses. The possibility that the neurons studied may participate in the transmission of activity from the locomotor region of the brain stem to stepping generators in the spinal cord is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 355–361, July–August, 1983.  相似文献   

15.
Morphine and morphine-related agents were applied by microiontophoresis in the lumbar spinal cord of spinal cats to single units classified on the basis of their responses to natural cutaneous or proprioceptive stimulation. Opiate application had a current-dependent depressant effect on the ongoing activities of about one-third of the units tested. This effect was observed in laminae I and IV--VI, but only with units responding to noxious cutaneous stimuli: the nociceptive responses were themselves depressed. Excitatory and inhibitory responses to glutamate and gamma-aminobutyric acid, respectively, were also depressed. Intravenous administration of the opiates at doses reported to produce analgesia in the cat also depressed only units responding to noxious cutaneous stimuli, including their nociceptive responses. This depression could be reversed by either the iontophoretic application (100 nA) or the intravenous administration (0.1--0.8 mg/kg) of naloxone. These results are interpreted as further evidence that the analgesic effects of opiates are at least partly due to an action at the spinal level.  相似文献   

16.
Direct cortical responses (DCR) to a series of electrical stimuli with a frequency of I to 50 per second with 10 to 20 pulses in each series were studied in chronic experiments on dogs. The nature of cortical responses differed, depending on stimulation parameters. As the stimulation frequency increased, the amplitude and number of late DCR components decreased, and with further increase of frequency, the early components decreased as well. The following types of responses were revealed: recruiting, intermittent and decremental. As the stimulation frequency increased all the three types of responses could be obtained in one and the same cortical point. Recruiting was not typical of high-amplitude and multi-component DCR with a long phase of depression of initial negativity and slightly pronounced short-term subsequent facilitation, while the intermittent type of response appeared at lower frequencies than in other dogs (5 to 10 per sec). A decremental type of response was observed in all the dogs at a stimulation frequency higher than 30 per sec. The duration of the series of after-discharges to a burst of electrical pulses depended on the pattern of the DCR to a single stimulus and on the intensity and frequency of stimulation. With similar parameters of stimulation, the greater the amplitude and the longer the duration of the slow negative DCR wave, the longer the period of after-discharges following a series of stimuli.  相似文献   

17.
Chen C  Blitz DM  Regehr WG 《Neuron》2002,33(5):779-788
The retinogeniculate synapse conveys visual information from the retina to thalamic relay neurons. Here, we examine the mechanisms of short-term plasticity that can influence transmission at this connection in mouse brain slices. Our studies show that synaptic strength is modified by physiological activity patterns due to marked depression at high frequencies. Postsynaptic mechanisms of plasticity make prominent contributions to this synaptic depression. During trains of retinal input stimulation, receptor desensitization attenuates the AMPA EPSC while the NMDA EPSC saturates. This differential plasticity may help explain the distinct roles of these receptors in shaping the relay neuron response to visual stimulation with the AMPA component being important for transient responses, while sustained high frequency responses rely more on the NMDA component.  相似文献   

18.
蟾蜍脊神经节神经元对外周重复刺激的反应   总被引:6,自引:0,他引:6  
吕国蔚  市翠英 《生理学报》1991,43(3):220-226
本工作用细胞内记录技术,研究并分析了蟾蜍离体脊神经节神经元对重复刺激其外周突(坐骨神经)的反应。所记录的66个神经元的传导速度,刺激阈值和静息膜电位分別为5.3—20.0m/s,0.02—0.10mA 和-50—-80mV。随着重复刺激频率的增加,脊神经节神经元的细胞内动作电位进行性地出现潜伏期动摇或延迟、振幅降低、后超极化减弱和时程延长。与此同时,锋电位分解成 S、NM 和 M 三种亚波成分,并进而出现脱失。S、NM 和 M 成分对刺激频率的跟随能力为 S相似文献   

19.
The effect of the muscarinic receptor antagonist AF-DX 116 on the inhibitory action of muscarinic agonists and on responses mediated by nicotinic or muscarinic ganglionic transmission was studied in the superior cervical ganglion of the anesthetized cat. The postganglionic compound action potential evoked by cervical sympathetic trunk stimulation was depressed by methacholine or acetylcholine (ACh) injected into the ganglionic arterial supply. The depression was blocked by AF-DX 116. The compound action potentials evoked by preganglionic stimulus trains were also depressed when the intratrain frequency was 2 Hz or greater. This intratrain depression was, however, insensitive to AF-DX 116. The anticholinesterase drug physostigmine markedly enhanced the intratrain depression of the compound action potential. This effect was reversed by AF-DX 116. During nicotinic receptor block with hexamethonium, preganglionic stimulus trains with intratrain frequencies of 5 Hz or greater produced nicitating membrane contractions that could be blocked by the M1 muscarinic receptor antagonist pirenzepine. The amplitude of the contractions increased with frequency and reached a maximum at 20-40 Hz. AF-DX 116 had no effect on these responses. After administration of physostigmine, the amplitude of the nictitating membrane responses decreased with increasing intratrain frequency. AF-DX 116 reversed this effect. The data suggest that, in the superior cervical ganglion, AF-DX 116 sensitive muscarinic receptors which depress synaptic transmission are activated by exogenous agonists but not by the ACh released by the preganglionic axon terminals unless cholinesterase activity is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号