首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato shoots and avocado mesocarp supplied with (±)-[2-14C]-5-(1,2-epoxy-2,6,6-trimethylcyclohexyl)-3-methylpenta-cis-2-trans-4-dienoic acid metabolize it into (+)-abscisic acid and a more polar material that was isolated and identified as (?)-epi-1′(R),2′(R)-4′(S)-2-cis-xanthoxin acid. The (+)-1′(S),2′(S)-4′(S)-2-cis-xanthoxin acid recently synthesized from natural violaxanthin, has the 1′,2′-epoxy group on the opposite side of the ring to that of the 4′(S)-hydroxyl group and the compound is rapidly converted into (+)-abscisic acid. The 1′,2′-epoxy group of (?)-1′,2′-epi-2-cis-xanthoxin acid is on the same side of the ring as the 4′(S) hydroxyl group: the compound is not metabolized into abscisic acid. The configuration of the 1′,2′-epoxy group probably controls whether or not the 4′(S) hydroxyl group can be oxidized. (+)-2-cis-Xanthoxin acid is probably not a naturally occurring intermediate because a ‘cold trap’, added to avocado fruit forming [14C]-labelled abscisic acid from [2-14C]mevalonate, failed to retain [14C] label.  相似文献   

2.
(±)-(2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid was metabolized by Cercospora cruenta, which has the ability to produce (+)-abscisic acid (ABA), to give (±)-(2Z,4E)-xanthoxin acid, (±)-(2Z,4E)-5′-hydroxy-1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acid, (±)-1′,2′-epoxy-1′,2′-dihydro-β-ionone and trace amounts of ABA.  相似文献   

3.
(2E,4E,6Z,8Z)-8-(3′,4′-Dihydro-1′(2H)-naphthalen-1′-ylidene)-3,7-dimethyl-2,3,6-octatrienoinic acid, 9cUAB30, is a selective rexinoid for the retinoid X nuclear receptors (RXR). 9cUAB30 displays substantial chemopreventive capacity with little toxicity and is being translated to the clinic as a novel cancer prevention agent. To improve on the potency of 9cUAB30, we synthesized 4-methyl analogs of 9cUAB30, which introduced chirality at the 4-position of the tetralone ring. The syntheses and biological evaluations of the racemic homolog and enantiomers are reported. We demonstrate that the S-enantiomer is the most potent and least toxic even though these enantiomers bind in a similar conformation in the ligand binding domain of RXR.  相似文献   

4.
《Phytochemistry》1987,26(4):1155-1158
The stem bark of Ocotea veraguensis has yielded nine neolignans of which five appear to be novel. The new neolignans, which were identified on the basis of spectral characteristics, are* (7S,8R,1′S,2′S,3′R,4′S)-Δ8′-2′,4′-dihydroxy-3,3′5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-7.3′,8.1′-neolignan, (7S,8R,1′S,3′S,4′S)-Δ8′-4,4'-dihydroxy-3,3′,5′-trimethoxy-1′,2′,3′,4′-tetrahydro-2′-oxo-7.3′,8.1′-neolignan, (7S,8S,1′R)-Δ8′-3′,5′-dimethoxy-3,4-methylenedioxy-1′,4′-dihydro-4′-oxo-7.0.2′,8.1′-neolignan, (7S,8S,1′R )-Δ8′-1′-methoxy-3,4-methylenedioxy-1′,6′-dihydro-6′-oxo-7.0.4′,8.3′-neolignan and (7S,8S)-Δ8′-2′,6′-dimethoxy-3,4-methylenedioxy-7.0.3′,8.4′,1′.0.7′-neolignan.  相似文献   

5.
Chiral (+)- and (?)-enantiomers of (2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid have been synthesized from the chiral epoxy alcohols (+)- and (?)-1′,2′-dihydro-1′,2′-epoxy-β-ionone, which were prepared by Katsuki-Sharpless' asymmetric epoxidation of β-cyclogeraniol. The (+)-enantiomer showed strong inhibitory activity in a rice seedling and lettuce germination assay, whereas the (?)-enantiomer was 103-times less active.  相似文献   

6.
《Phytochemistry》1987,26(2):557-560
The alkaloid isostrychnopentamine has been shown to be epimeric with strychnopentamine at the asymmetric carbon atom of the N-methylpyrrolidin-2-yl group. Its lUPAC name is 2-[(1′,2′,3′,4′-tetrahydro-2′-methyl-β-carbolin-1′-yl)methyl]-11-(1″-methyl-pyrrolidin-2″-yl)-3-vinyl-1,2,3,4,6,7,12,12b-octahydro-indolo[2,3-a]quinolizin-10-oL [2(S),3(R),12b(S),1′(S),2″(S)].  相似文献   

7.
(7S,8R,7′S)-9,7′,9′-Trihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (1) and (7S,8R,7′S)-9,9′-dihydroxy-3,4-methylenedioxy-3′,7′-dimethoxy [7-O-4′,8-5′] neolignan (2), two new natural dihydrobenzofuran-type neolignans, along with 9,9′-dihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (3) and (-)-machicendiol (4), were isolated from the whole plants of Breynia fruticosa. The structures of 1 and 2, including the absolute configurations, were determined by spectroscopic methods and circular dichroism (CD) techniques. The absolute configuration of 4 was confirmed by calculations of the OR spectrum, together with OR and ECD spectra of its p-bromobenzoate ester (4a).  相似文献   

8.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

9.
A previous report disclosed the presence of benzodioxan and bicyclo[3.2.1]octanoid neolignans in the benzene extract of the trunk wood of an Amazonian Aniba (Lauraceae) species. The chloroform extract of the same material contains additionally two new benzodioxan neolignans [rel-(7S,8R)-Δ8′-7-hydroxy-3,4,5,5′-tetramethoxy-7.0.3′,8.0.4′-neolignan; rel-(7R,8R)-Δ7′-3,4,5,5′-tetramethoxy-9′-oxo-7.0.3′,8.0.4′-neolignan], two new bicyclo[3.2.1]-octanoid neolignans [(7R,8S,1′S,2′S,3′S,4′R)-Δ8′-2′,4′-dihydroxy-3,3′-dimethoxy-4,5-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan; (7R,8S,1′R,2′S,3′S)-Δ8′-2′-hydroxy-3,3′,5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-4′-oxo-7.3′,8.1′-neolignan] and a hydrobenzofuranoid neolignan [(7S,8R,1′S,5′S)-Δ8′-3,3′,5′-tri-methoxy-4,5-methylenedioxy-1′,4′,5′,6′-tetrahydro-4′-oxo-7.0.2′,8.1-neolignan].  相似文献   

10.
The structures of the bound 13C/2H double-labelled 2′(R/S), 5′(R/S)-2H2-1′,2′,3′,4′,5′-13C5-2′-deoxyadenosine and the corresponding 2′-deoxycytidine moieties in the complexes with human deoxycytidine kinase (dCK) have been characterized for the first time by the solution NMR spectroscopy, using Transferred Dipole-Dipole Cross-correlated Relaxation and Transferred nOe experiments. It has been shown that the ligand adopts a South-type sugar conformation when bound to dCK.  相似文献   

11.
The structures of two new compounds from the root bark of Turraeanthus mannii (Meliaceae) were determined as (3R,4R,3′R,4′R)-6,6′-dimethoxy-3,4,3′,4′-tetrahydro-2H,2′H-[3,3′]bichromenyl-4,4′-diol (1) and 15-acetoxy-labda-8(17),12E,14Z-trien-16-al (2) by means of spectroscopic analysis. Five further known compounds including one coumarin derivative, one chromenone, two labdane diterpenes and one pregnane steroid have been isolated from the same source. In antifungal and cytotoxic assays, 15-acetoxy-labda-8(17),12E,14Z-trien-16-al (2) was highly active against Mucor miehei and Artemia salina, respectively.  相似文献   

12.
Forteen neolignans, isolated from the benzene extract of Aniba simulans (Lauraceae) trunk wood, included the hitherto undescribed (2S, 3S, 5R)-5-allyl-5,7-dimethoxy-2-(3′,4′,5′-trimethoxyphenyl)-3-methyl-2,3,5,6-tetra-hydro-6-oxobenzofuran, (2R,3S,5R) -5-allyl-5-methoxy-2-(3′-methoxy-4′,5′-methylenedioxyphenyl)-3-methy1-2,3,5, 6-tetrahydro-6-oxobenzofuran, (2S,3S)-6-O-allyl -5-methoxy-2-(3′-methoxy-4′-5′-methylenedioxyphenyl)-3-methyl-2,3-dihydrobenzofuran, (2R,3S)-6-O-allyl-5-methoxy-2- (3′-methoxy-4′,5′-methylenedioxyphenyl)-3-methyl-2,3-dihydrobenzofuran and 7-allyl-6-hydroxy-5-methoxy-2-(3′-methoxy-4,5′ -methylenedioxyphenyl)-3-methylbenzofuran.  相似文献   

13.
A novel acylphloroglucinol, (5Z,8Z11Z,13E,17Z)-2′-eicosa-15(S)-hydroxy-5,8,11,13,17-pentaenoylphloroglucinol, has been isolated from the brown alga Zonaria tournefortii and its structure proved by spectroscopic and chemical methods.  相似文献   

14.
Six coumarins have been isolated from the aerial parts of Coleonema album and identified as ulopterol, 7-(3′, 3′-dimethylallyloxy)-coumarin, (R)-(+)-2′,3′-epoxy-suberosin, and the novel coumarins (R)-(+)-7-(2′, 3′-epoxy-3′-methylbutoxy)-coumarin, (R)-(+)-7-(2′,3′-dihydroxy-3′-dihydroxy-3′-methylbutoxy)-coumarin and (R)-(+)-7-methoxy-8-(2′,3′-epoxy-3′-methylbutoxy)-coumarin.  相似文献   

15.
The trunk wood of Licaria chrysophylla contains rel-(7S, 8R, 1′S, 5′S)-Δ8′-3,3′,5′-trimethoxy-4,5-methylenedioxy-1′,4′,5′,6′- tetrahydro-4′-oxo-7.1′,8.0.2′-neolignan (chrysophyllin A), which differs from all other known benzofuranoid neolignans by showing 7.1′ (rather than 8.1′) and 8.0.2′ (rather than 7.0.2′) linkages between the propenylphenol and allylphenol derived moieties.  相似文献   

16.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

17.
Extensive screening for the antiproliferative activity of different compounds found in trees was performed by extracting the leaves of Aphananthe aspera (Thunb.) Planch and then using chromatographic separation to afford 2 new compounds, (2S,4R)-2-carboxy-4-(E)-p-caffeoyl-1-methyl-hydroxyproline (1) and 5-O-caffeoyl quinic acid-(7′R,8′S,7′′E)-3′,4′,3′′-dihydroxy-4′′,7′-epoxy-8′,5′′-neolign-7′-ene-9- carboxyl (2). In addition, 6 known compounds were discovered from the leaves of this plant. The structural determination of all compounds, including their absolute configurations, was established by UV, IR, HRESIMS, 1D and 2D NMR, and CD spectroscopy. The novel compound 1 showed strong antiproliferative activity against human breast adenocarcinoma cells MCF-7 and MDA-MB-231.  相似文献   

18.
The CH2Cl2 and MeOH extracts from leaves of Piper caldense were subjected to chromatographic separation procedures to afford the new prenylated benzoic acid, caldensinic acid (3-[(2′E,6′E,10′E)-11′-carboxy-3′,7′,15′-trimethylhexadeca-2′,6′,10′,14′-tetraenyl]-4,5-dihydroxybenzoic acid) whose structure was determined by spectral analysis, mainly NMR (1H, 13C, HSQC, HMBC) and ESI-MS. The natural compound and derivatives displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum by direct bioautography.  相似文献   

19.
Twenty-two known compounds were isolated from the 95% alcohol extract of the fruits of Illicium simonsii Maxim, including seven sesquiterpenoids (1622) and fifteen lignans (115). In the present research, compounds 3 ((7S,8R,8′S)-3,3′-dimethoxy-4,4′,9-trihydroxy-7,9′-epoxylignan-7′-one), 4 ((−)-(7′S,8S,8′R)-4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7′,9-epoxylignan-9′-ol-7-one), 5 ((+)-8-hydroxypinoresinol), 6 ((+)-8-hydroxymedioresinol), 8 ((2R,3R)-2β-(4″-hydroxy-3″-methoxybenzyl)-3α-(4′-hydroxy-3′-methoxybenzyl)-γ-butyrolactone 2-O-(β-D-glucopyranoside), 12 ((+)-8-methoxyisolariciresinol), 13 (α-conidendrin), 14 (boehmenan) and 15 (7R,8R,7′E-7′,8′-didehydro-4,7,9,9′- tetrahydroxy-3-methoxy-8-O-4′-neolignan) were reported from the Illicium genus for the first time, and compounds 1 (simulanol), 7 ((+)-secoisolariciresinol monoglucoside), 10 ((+)-9-O-β-D-glucopyranosyl lyoniresinol), 11 ((+)-isolariciresinol), 18 (neoanisatin), 19 (veranisatin A), 20 (4,5-d2-8′-oxo-dihydrophaseic acid) and 22 (Oligandrumin A) were firstly isolated from the plant. Their structures were elucidated on the basis of NMR spectroscopic and mass spectrometric data. Moreover, the chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

20.
Two acid phosphomonoesterases, 5′(3′)-ribonucleotide phosphohydrolase and 3′-ribonucleotide phosphohydrolase, were isolated from Tradescantia albiflora leaf tissue and purified by ammonium sulphate precipitation, gel filtration on Sephadex G-200 and repeated chromatography on DEAE-cellulose. The enzymes differed in their sensitivity to dialysis against 1 mM EDTA; the activity of 5′(3′)-ribonucleotide phosphohydrolase was unaffected, while 3′-ribonucleotide phosphohydrolase showed an increase of 60–90%. Both enzymes were rapidly inactivated above 50°. Their ion sensitivity was identical: 1 m M Zn2+ and Fe2+ were inhibitors for both by 20–80%; while Mg2+, Ca2+, Co2+, K+, Na+ at 1–10 mM had no significant effect on the activity of either enzyme. Inorganic phosphate inhibited both enzymes almost completely. EDTA (1 mM) did not inhibit either enzyme; none of the divalent cations tested were enzyme activators. 3′-Ribonucleotide phosphohydrolase hydrolysed both 3′- and 5′-nucleoside monophosphates (3′-AMP, 3′-CMP, 3′-GMP, 3′-UMP, 5′-AMP, 5′-CMP, 5′-GMP, 5′-UMP). 5′(3′)-Ribonucleotide phosphohydrolase showed a preference for the 3′-nucleoside monophosphates. Adenosine 3′,5′-cyclic monophosphate, purine and pyrimidine 2′,3′-cyclic mononucleotides at 0.1–1.OmM did not inhibit the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号