首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of anthocyanidins and anthocyanins were analyzed in flowers of 30 taxa of Aconitum. Delphinidin was detected as a major anthocyanidin from the hydrolysate of 29 taxa with violet and violet-blue flowers. Pelargonidin was identified as a major anthocyanidin in one taxon with white flowers (partially pale reddish purple; White group N155C by R.H.S. Colour Chart). This is the first reported detection of pelargonidin as a major anthocyanidin from Aconitum flowers. Pelargonidin was also found in ten taxa as a minor anthocyanidin, whereas cyanidin was detected from the flowers of all 30 taxa as a minor anthocyanidin.Two anthocyanins polyacylated by p-hydroxybenzoic acids, violdelphin and monodeacylcampanin were identified from 29 taxa with violet and violet-blue flowers as major anthocyanins. This is the first reported isolation of monodeacylcampanin from Aconitum flowers. The structures of these two anthocyanins were elucidated on the basis of Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS).  相似文献   

2.
p-Coumaric and 3-O-p-coumarylquinic acid seem to be important precursors of chlorogenic acid in the leaves of Cestrum poeppigii. 3-O-Cinnamylquinic acid, which has a very small metabolic activity, is of little importance in this respect. The kinetics of incorporation of radioactivity from t-cinnamic acid-3-[14C] into p-coumaric, 3-O-p-coumarylquinic, chlorogenic and 3-O-cinnamylquinic acid showed that the biosynthetic rates for these products decrease in the order shown. For p-coumaric acid, which has a markedly high metabolic activity, a turnover rate of 28 μg/hr and per gram fresh plant leaf, was calculated. Some trapping experiments with caffeic acid, and the acids mentioned above and using either t-cinnamic acid-3-[14C] or p-coumaric acid-2-[14C] as precursor, are discussed. A HPLC method for the rapid determination of phenolic acids in plant extracts, is described.  相似文献   

3.
In petals of Silene dioica, gene P controls the 3′-hydroxylation of the anthocyanin B-ring and the hydroxylation pattern of the hydroxycinnamoyl acyl group bound to the 4″'-hydroxyl group of rhamnose of anthocyanidin 3-rhamnosyl(1→6)glucoside-5-glucoside. In this paper, experiments are presented which show that gene P is involved in the hydroxylation of p-coumaroyl-CoA to caffeoyl-CoA, which is then used both as a precursor in anthocyanin biosynthesis and as a substrate for the final acylation.  相似文献   

4.
p-Hydroxyphenyl compounds [3-(p-hydroxyphenyl)propionic acid, p-hydroxyphenethyl alcohol, hordenine, p-ethylphenol, 3-(p-hydroxyphenyl)-1-propanol, p-n-propylphenol, and p-hydroxyphenyllactic acid] were recently found to be excellent fluorogenic substrates for the horseradish peroxidase-mediated reaction with hydrogen peroxide. A very rapid and sensitive method for the fluorometric assays of hydrogen peroxide and the peroxidase was established by using 3-(p-hydroxyphenyl)propionic acid as the best of these substrates; hydrogen peroxide can be assayed precisely in amounts as small as 0.1 nmol, with peroxidase activity as low as 7.8 μU.  相似文献   

5.
Eleven compounds isolated from the growth inhibiting active fraction of male flowers of Cucurbita pepo, were identified as p-hydroxybenzaldehyde, anisyl alcohol, p-hydroxybenzyl methyl ether, p-hydroxybenzyl alcohol, veratryl alcohol, isovanillyl alcohol, p-coumaric acid, phloretic acid, benzyl-β-d-glucoside, 4-methoxybenzyl-β-d-glucoside and 3, 4-dimethoxybenzyl-β-d-glucoside. Each compound was assayed for growth inhibiting activity using lettuce seedlings; three showed strong activity, whereas the glucosides were inactive.  相似文献   

6.
Anthocyanins present in eggplant were decolorized by anthocyanase from flesh of eggplant. The anthocyanins consisted of at least three different anthocyanins containing delphinidin as common aglycone, and that a main component of those was nasunin, delphinidin-3-diglucoside acylated with p-coumaric acid.

Using the anthocyanin as substrate, the anthocyanase action was optimal at pH 6.0 and 35°C, and was inhibited by potassium cyanide, thiourea, and sodium chloride. The data obtained so far show that anthocyanase acts on the following anthocyanidin derivatives in order of increasing rate of decolorization; pelargonidin-=peonidin-<cyanidin-<delphinidin-<delphinidin-glucoside acylated with p-coumaric acid.  相似文献   

7.
A monophenol oxidase activity in extracts of sorghum   总被引:1,自引:0,他引:1       下载免费PDF全文
A p-hydroxycinnamic acid oxidase activity was present in enzyme preparations from first internodes of Sorghum vulgare variety Wheatland milo when incubated in phosphate buffer at pH 7.5. This preparation had no classical polyphenolase activity but had both peroxidase and catalase activities. Since horseradish preparations catalyzed the same reaction, the oxidation probably is another example of a peroxidase-oxidase reaction. A second substrate was p-hydroxyphenylpyruvic acid. Ferulic acid was slightly active at low concentrations and inhibitory at higher ones. Diphenols such as caffeic and chlorogenic acids were inactive and inhibitory to p-hydroxycinnamic acid oxidation. A variety of monophenols such as tyrosine and cinnamic acid were inactive. An active substrate must have a free monophenolic group and para to this a C3 side chain with a double bond and probably a free terminal acid group. A sulfhydryl reducing agent at the 5 millimolar level such as mercaptoethanol, reduced glutathione, or dithiothreitol was obligatory. Products were varied and were found in both the ethyl acetate-soluble and insoluble fractions after acidification of the incubation mixtures. With internode extracts, about 1 micromole of O2 was consumed per micromole of p-hydroxycinnamic acid that disappeared in the presence of mercaptoethanol. Tetrahydrafolic acid plus mercaptoethanol were required for a second step oxidation or a parallel reaction; about 2 micromoles of O2 were consumed per micromole of p-hydroxycinnamic acid that disappeared. Potassium cyanide, diethyldithiocarbamate, ascorbic acid, and ethylenediaminetetraacetate were inhibitory. A similar mercaptoethanol-dependent monophenol oxidase was present in preparations from green shoots that also contained a classical polyphenolase activity. The activity was present in both soluble and particulate (500 to 100,000 gravity) fractions of internodes. Preliminary studies were made of enzyme complexes in the particulate fractions capable of converting phenylalanine and tyrosine to the level of ferulic acid when the above p-hydroxycinnamic acid oxidase was blocked with ascorbic acid. The ratelimiting step was the hydroxylation of p-hydroxycinnamic acid.  相似文献   

8.
Production of Skatole and para-Cresol by a Rumen Lactobacillus sp.   总被引:7,自引:3,他引:4       下载免费PDF全文
The objective of this study was to examine the substrate specificity of several ruminal strains of a Lactobacillus sp. which previously was shown to produce skatole (3-methylindole) by the decarboxylation of indoleacetic acid. A total of 13 compounds were tested for decarboxylase activity. The Lactobacillus strains produced p-cresol (4-methylphenol) by the decarboxylation of p-hydroxyphenylacetic acid, but did not produce either o-cresol or m-cresol from the corresponding hydroxyphenylacetic acid isomers. These strains also decarboxylated 5-hydroxyindoleacetic acid to 5-hydroxyskatole and 3,4-dihydroxyphenylacetic acid to methylcatechol. Skatole and p-cresol were produced in a 0.5:1 ratio, when indoleacetic acid and p-hydroxyphenylacetic acid were combined in equimolar concentrations. Competition studies with indoleacetic acid and p-hydroxyphenylacetic acid suggested that two different decarboxylating enzymes are involved in the production of skatole and p-cresol by these strains. This is the first demonstration of both skatole production and p-cresol production by a single bacterium.  相似文献   

9.
Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol · min−1 · mg−1 in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity.  相似文献   

10.
M. Teusch  G. Forkmann  W. Seyffert 《Planta》1986,168(4):586-591
In flower extracts of defined genotypes of Matthiola incana, an enzyme was demonstrated which catalyzes the transfer of the glucosyl moiety of uridine 5-diphosphoglucose (UDPGlc) to the 5-hydroxyl group of pelargonidin and cyanidin 3-glycosides and acylated derivatives. The best substrate for 5-glucosylation is the 3-xylosylglucoside acylated with p-coumarate, followed by the 3-xylosylglucoside and by the acylated (p-coumarate) 3-glucoside. The 3-glucoside itself is a very poor substrate. Besides UDPGlc, thymine 5-diphosphoglucose is a suitable glucosyl-donor, but with a reduced reaction rate (42%). The anthocyanin 5-O-glucosyltransferase exhibits a pH optimum at 7.5 and is generally inhibited by divalent ions and by ethylenediaminetetraacetic acid and p-chloromercuribenzoate. Investigations on different genotypes showed that the 5-O-glucosyltransferase activity is clearly controlled by the gene l. In confirmation of earlier chemogenetic work, enzyme activity is only present in lines with the wild-type allele l+. The anthocyanin 5-O-glucosyltransferase activity is strictly correlated with the formation of 5-glucosylated anthocyanins during bud development.Abbreviations Cg 3,5-T-cyanidin 3-sambubioside-5-glucoside - EDTA ethylene diaminetetraacetic acid - 5GT UDP-glucose: anthocyanin 5-O-glucosyltransferase - 3GT UDP-glucose: anthocyanidin/flavonol 3-O-glucosyltransferase - HPLC high-performance liquid chromatography - TLC thin-layer chromatography - UDPGlc uridine 5-diphospho-glucose  相似文献   

11.
The effect of several environmental conditions on the structure and activity of a membrane-associated proteinase from Streptococcus lactis was investigated. The activity of the enzyme varied with pH. Before storage at 3 C, maximal activity occurred at pH 6.0, but was minimal at this pH after storage. At all pH values tested, the enzyme was inactivated after storage. After storage at 3 C, the enzyme showed gross structural alterations with a concomitant loss of activity. Gel filtration and sedimentation velocity data indicated that inactivation of the enzyme was the result of aggregation to higher molecular weight forms. p-Hydroxymercuribenzoate prevented inactivation of the enzyme during storage by preventing aggregation. Activity was correlated with disaggregation of polymer forms of the enzyme to an active monomer. The storage-inactivated enzyme could be reactivated by treatment of the enzyme with cysteine, glutathione, or ferrous ion. Glutathione enabled stored cells to produce acid at their original rate when subcultured in milk. This was attributed to the effect of glutathione on the membrane proteinase. The data suggested that the biological activity of stored cells may be dependent upon the activity of the membrane proteinase.  相似文献   

12.
花青素是植物体内广泛存在的一类天然色素,具有重要的生理功能。花青素合成途径可受多种因素调控,其中植物生长激素赤霉素(gibberellic acid,GA)对其的调控作用报道较少。本文用不同浓度的赤霉素处理心里美萝卜幼苗,以探讨它对花青素含量的影响。结果表明,外源GA3处理显著增加了萝卜幼苗的下胚轴长度,并提高了下胚轴中α-淀粉酶活性;显著降低下胚轴中花青素的含量。1 μmol/L GA3处理效果较好;处理后第3 d和第5 d,花青素合成的关键酶查尔酮合酶、查尔酮异构酶和花青素还原酶编码基因的表达水平均低于对照组。同时,外源GA3显著诱导过氧化物酶活性的升高。上述结果表明,外源赤霉素可能通过下调花青素合成基因的表达,提高过氧化物酶活性和促进下胚轴伸长生长降低花青素的水平。  相似文献   

13.
Glucosylation of anthocyanidin substrates at the 3-O-position is crucial for the red pigmentation of grape berries and wine. The gene that encodes the enzyme involved in this reaction has been cloned from Vitis labrusca cv. Concord, heterologously expressed, and the recombinant enzyme (rVL3GT) was characterized. VL3GT has 96% amino acid sequence identity with Vitis vinifera VV3GT and groups phylogenetically with several other flavonoid 3-O-glycosyltransferases. In vitro substrate specificity studies and kinetic analyses of rVL3GT indicate that this enzyme preferentially glucosylates cyanidin as compared with quercetin. Crude protein extracts from several Concord grape tissues were assayed for glucosyltransferase activity with cyanidin and quercetin as acceptor substrates. A comparison of the VL3GT activities toward with these substrates showed that the 3GT enzyme activity is consistent with the expression of VL3GT in these tissues and is coincident with the biosynthesis of anthocyanins in both location and developmental stages. Enzyme activities in grape mesocarp, pre-veraison exocarp, leaf, flower bud, and flower tissues glucosylated quercetin but not cyanidin at high rates, suggesting the presence of additional enzymes which are able to glucosylate the 3-O-position of flavonols with higher specificity than anthocyanidins.  相似文献   

14.
Gel permeation, preparative isoelectric focusing, and affinity chromatography were used to purify three inhibitors of proteolytic activity from perchloric acid extracts of last instar Galleria mellonella larvae. Electrofocusing experiments revealed three isoinhibitors with different isoelectric points: inhibitor I-1 with p1 of pH 5.6, inhibitor I-2, pH 7.7, and inhibitor I-3 (of small inhibitory activity), pH 8.6. By affinity chromatography on trypsin-Sepharose 4B the I-1 was purified 9.7 ×, but 71.1% of inhibitory activity was lost. Molecular mass of the inhibitory complex was 12,600 Da. I-1 and I-2 are relatively stable to heat at several pHs with minor stability at pH 10. I-1 and I-2 inhibit serine proteases about 2.5 times as much as sulfhydryl proteases. In the same ratio protease P-1 and protease P-2 from Metarhizium anisopliae are inhibited.  相似文献   

15.
16.
Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3 mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62 mM (472 mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56 mM (280 mg/L) and 1 mM (180 mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids.  相似文献   

17.

Background

Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood.

Methodology/Principal Findings

The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil.

Conclusions/Significance

These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.  相似文献   

18.
Tyrosinase-catalyzed L-tyrosine oxidation is a key step in melanogenesis, and intense melanin formation is often a problem in chemotherapies or food preservation. Methyl p-coumarate is isolated from fresh flower of medicinal plant, Trixis michuacana var longifolia (D. Dow) C., and it suppressed melanogenesis in cultured murine B16-F10 melanoma cells while p-coumaric acid did not show anti-melanogenic activity. Methyl p-coumarate exhibited cytotoxicity with an IC50 of 130 μM (23.2 µg/mL), and p-coumaric acid showed similar activity, but to a lesser extent, suggesting that the anti-melanogenic activity of methyl p-coumarate is at least due to the melanocytotoxicity. This cytotoxicity of methyl p-coumarate was reduced in a dose-dependent manner by ascorbic acid but not with butylated hydroxyanisole. Moreover, methyl 4-methoxycinnamate, which lacks the oxidizable phenolic hydroxyl group, still exhibited comparable cytotoxicity to methyl p-coumarate. In addition, anethole did not show noticeable cytotoxicity, indicating that the enone moiety is an essential element in eliciting melanocytotoxicity. Thus, the enone moiety in methyl p-coumarate is a biologically critical nucleophilic group as a Michael reaction acceptor contributing to the anti-melanogenic activity and cytotoxicity against melanoma cells.  相似文献   

19.
Hemolymph phenoloxidase activity of sugar-fed and blood-fed females of Anopheles quadrimaculatus and Aedes aegypti showed similar characteristics. Phenoloxidase was present as an inactive proenzyme in both mosquito species and was partially activated during collection of the hemolymph. In both mosquito species, phenoloxidase activity was modulated by different buffers and activated phenoloxidase did not need Ca2+. Enzymatic activity was higher in the hemocytes than in the plasma in both mosquito species. Trypsin, laminarin, and blood-feeding on uninfected and Brugia malayi-infected jirds enhanced hemolymph phenoloxidase activity in both mosquito species. The appearance of hemolymph phenoloxidase activity was inhibited by p-nitrophenyl p′-guanidinobenzoate HCl, soybean trypsin inhibitor, ethylenediaminetetraacetic acid, diethyldithiocarbamic acid, saturated 1-phenyl-2-thiourea and reduced glutathione, but not by benzamidine in A. quadrimaculatus. The appearance of hemolymph phenoloxidase activity was inhibited by benzamidine, diethyldithiocarbamic acid, saturated 1-phenyl-2-thiourea, reduced glutathione, β-nitrophenyl p′-guanidinobenzoate and soybean trypsin inhibitor, but not by ethylenediaminetetraacetic acid in A. aegypti. It is suggested that in both mosquito species, blood-feeding and migration of sheathed microfilariae in the homocoel activated the prophenoloxidase in the hemolymph and caused the encapsulation and melanization of microfilarial sheaths and microfilariae of B. malayi.  相似文献   

20.
Tyrosinase is involved in the synthesis of melanin in the skin and hair as well as neuromelanin in the brain. This rate limiting enzyme catalyzes two critical steps (reactions) in melanogenesis; the hydroxylation of tyrosine to form DOPA and the subsequent oxidation of DOPA into dopaquinone. Several new aminophenol derivatives have been synthesized based on structure–activity relationship studies of N-(4-hydroxyphenyl)retinamide (1), a derivative of retinoic acid. In order to find new tyrosinase inhibitors, we investigated the effects of these p-aminophenols, including p-decylaminophenol (3), on the activity of mushroom tyrosinase. Compound 3 was the most potent agent, showing significant inhibition as compared with control. The inhibitory effects of 3 on tyrosinase activities were greater than seen with kojic acid, a well-known potent inhibitor of tyrosinase activity, which also causes adverse effects, including rash and dermatitis. A Lineweaver–Burk kinetic analysis of inhibition showed that 3 suppresses tyrosinase activity in a non-competitive fashion for both substrates, tyrosine and DOPA. These results suggest that 3 might be a useful alternative to kojic acid as a tyrosinase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号