首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive). These IL-10-Tg mice and non-Tg wild-type controls were immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein. Constitutive expression of IL-10 in macrophages abrogated disease and reduced Ag-specific immunological responses. These mice had detectable levels of IL-10 in sera and in ocular extracts. In contrast, expression of IL-10 in activated T cells only partially protected from EAU and marginally reduced Ag-specific responses. All IL-10-Tg lines showed suppression of Ag-specific effector cytokines. APC from Tg mice constitutively expressing IL-10 in macrophages exhibited decreased ability to prime naive T cells, however, Ag presentation to already primed T cells was not compromised. Importantly, IL-10-Tg mice that received interphotoreceptor retinoid-binding protein-specific uveitogenic T cells from wild-type donors were protected from EAU. We suggest that constitutively produced endogenous IL-10 ameliorates the development of EAU by suppressing de novo priming of Ag-specific T cells and inhibiting the recruitment and/or function of inflammatory leukocytes, rather than by inhibiting local Ag presentation within the eye.  相似文献   

2.
Although IL-10 acts as an inhibitory cytokine for APC and CD4(+) T cell function, its effects on CD8(+) T cells are unclear. Additionally, little is known about whether initial priming in the presence of IL-10 can have long-lasting effects and influence subsequent CD8(+) T cell responses that occur in the absence of the cytokine. In the present study, we clarified the role of IL-10 during primary responses and examined whether exposure to IL-10 during initial priming of CD8(+) T cells impacted secondary responses. To determine the effect of IL-10 on Ag-specific T cell responses, peptide-pulsed IL-10R2(-/-) splenic dendritic cells were used to prime T cells from OT-I CD8(+) TCR transgenic mice. During the primary response, the presence of IL-10 resulted in enhancement of CD8(+) T cell numbers without detectable alterations in the kinetics or percentage of cells that underwent proliferation. A modest increase in survival, not attributable to Bcl-2 or Bcl-x(L), was also observed with IL-10 treatment. Other parameters of CD8(+) T cell function, including IL-2, IFN-gamma, TNF-alpha, and granzyme production, were unaltered. In contrast, initial exposure to IL-10 during the primary response resulted in decreased OT-I expansion during secondary stimulation. This was accompanied by lowered IL-2 levels and reduced percentages of proliferating BrdU(+) cells and OT-I cells that were CD25(high). IFN-gamma, TNF-alpha, and granzyme production were unaltered. These data suggest that initial exposure of CD8(+) T cells to IL-10 may be temporarily stimulatory; however, programming of the cells may be altered, resulting in diminished overall responses.  相似文献   

3.
IL-10: a novel cytotoxic T cell differentiation factor   总被引:29,自引:0,他引:29  
A previous report concluded that a new cytokine, designated IL-10, is a growth cofactor for thymocytes, spleen, and lymph node cells. In this report, we have focused on the effects of IL-10 on CD8+ spleen T cells. We first observed that IL-10 enhances the growth of CD8+ T cells to IL-2. We then investigated the effect of murine rIL-10 on the induction of murine effector CTL from CTL precursors (CTL-p) using both bulk and filler cell-free limiting-dilution cultures. IL-10 alone could not induce Con A-activated FACS-sorted CD8+ T cells either to proliferate or to generate effector CTL. In combination with IL-2, however, IL-10 augmented the cytolytic activity of effector CTL generated from Con A-activated spleen CD8+ T cells in bulk cultures incubated for 5 days. In limiting-dilution cultures (using solid-phase anti-CD3 mAb as stimulus), IL-10, in combination with IL-2, substantially increased the CTL-p frequency and augmented the cytolytic activity per clone expanded from one CD8+ T cell when compared with cells cultured in IL-2 alone. Kinetic studies showed that IL-10 is required at both early and late culture stages for optimal generation of effector CTL. The potentiating effects of IL-10 on CTL function were neutralized by an anti-IL-10 mAb. These results indicate that IL-10 has direct effects on mature T cells, and suggest that IL-10 also functions as a cytotoxic T cell differentiation factor, which promotes a higher number of IL-2-activated CTL-p to proliferate and differentiate into effector CTL. In contrast, IL-10 did not enhance significantly the lymphokine-activated killer cell activity of IL-2-grown CD8+ cytotoxic T cells.  相似文献   

4.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

5.
IL-10, T cell exhaustion and viral persistence   总被引:7,自引:0,他引:7  
Viral infections can have one of two outcomes: control of viral replication and acute infection or viral persistence and chronic infection. It is clear that both pathogen and host characteristics influence the acute versus chronic outcome of viral infection. The early events in the host immune response that favor immunosuppression and viral persistence, however, have remained poorly understood. Using the well-characterized mouse model of acute versus chronic lymphocytic choriomeningitis virus (LCMV) infection, two groups have recently identified the interleukin-10 (IL-10)/IL-10R pathway as a key regulator of acute versus chronic infection. Blockade of IL-10R converted a chronic LCMV infection into a rapidly controlled acute viral infection and prevented the functional exhaustion of memory T cells. These insights into the role of IL-10 in the establishment of chronic infection could lead to new therapeutic opportunities during human infections with pathogens such as HIV, hepatitis C virus (HCV) and hepatitis B virus (HBV).  相似文献   

6.
7.
8.
In vivo IL-12-dependent tumor inhibition rests on the ability of IL-12 to activate a CD8-mediated cytotoxicity, inhibit angiogenesis, and cause vascular injury. Although in vivo studies have shown that such inhibition stems from complex interactions of immune cells and the production of IFN-gamma and other downstream angiostatic chemokines, the mechanisms involved are still poorly defined. Here we show that IL-12 activates an anti-angiogenic program in Con A-activated mouse spleen cells (activated spc) or human PBMC (activated PBMC). The soluble factors they release in its presence arrest the cycle of endothelial cells (EC), inhibit in vitro angiogenesis, negatively modulate the production of matrix metalloproteinase-9, and the ability of EC to adhere to vitronectin and up-regulate ICAM-1 and VCAM-1 expression. These effects do not require direct cell-cell contact, yet result from continuous interaction between activated lymphoid cells and EC. We used neutralizing Abs to show that the IFN-inducible protein-10 and monokine-induced by IFN-gamma chemokines are pivotal in inducing these effects. Experiments with nu/nu mice, nonobese diabetic-SCID mice, or activated spc enriched in specific cell subpopulations demonstrated that CD4(+), CD8(+), and NK cells are all needed to mediate the full anti-angiogenetic effect of IL-12.  相似文献   

9.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

10.
DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced genes, mostly involved in splicing and signal transduction, are correlated with the local modulation of meDNA. Our observations suggest that, although DNA methylation has multiple avenues to affect alternative splicing, its indirect effect may also be mediated through alternative splicing isoforms of these meDNA sensors.  相似文献   

11.
12.
Numerous studies have demonstrated the role of regulatory T (Treg) cells in peripheral tolerance. Nevertheless, how the survival and death of Treg cells is controlled is largely unknown. In this study, we investigated the mechanisms involved in regulating the homeostasis of a subset of Ag-specific alphabetaTCR+ CD4-CD8- double negative (DN) Treg cells. We demonstrate that DN Treg cells are naturally resistant to TCR cross-linking-induced apoptosis. Administration of exogenous IL-10 renders DN Treg cells susceptible to apoptosis, and abolishes their suppressive function. Furthermore, TCR cross-linking of DN Treg cells in the presence of IL-10 leads to the up-regulation of the membrane-bound but not the soluble form of TNF-alpha. Interaction of membrane bound TNF-alpha with TNFR2 sends death signals to DN Treg cells. Blocking their interaction can reverse the effects of IL-10 on DN Treg cells. These results provide insights into the mechanisms that regulate the function and homeostasis of DN Treg cells.  相似文献   

13.
This paper evaluates methods to measure crosslinkage due to psoralen plus light in total DNA and in specific sequences. DNA exposed in cells or in vitro to a bifunctional psoralen and near ultraviolet light accumulates interstrand crosslinks. Crosslinkage is the DNA mass fraction that is attached in both strands to a crosslink. We show here biochemical methods to measure psoralen photocrosslinkage accurately in total DNA. We also describe methods to measure photocrosslinkage indirectly, in specific sequences, by nucleic acid hybridization. We show that a single 4,5',8-trimethylpsoralen (TMP) crosslink causes at least 50 kbp of alkali-denatured DNA contiguous in both strands with it to snap back into the duplex form when the denatured preparation is returned to neutral pH. This process was so efficient that the DNA was not nicked by the single-strand nuclease S1 at 100-fold excess after snapping back. Uncrosslinked DNA was digested to acid-soluble material by the enzyme. Crosslinkage therefore equals the fraction of S1-resistant nucleotide in this kind of experiment. We alkali-denatured DNA samples crosslinked to varying degrees by varying TMP concentration at constant light exposure. We then measured crosslinkage by ethidium bromide (EtBr) fluorometry at pH 11.8; by EtBr fluorometry at neutral pH of S1 digests of the DNA; and by the fraction of radioactivity remaining acid insoluble in S1-digests of DNA labeled uniformly with [3H]deoxythymidine. These assays measure distinct physical properties of crosslinked DNA. Numerical agreement is expected only when all three measurements are accurate. Under optimum conditions, the three methods yielded identical results over the range of measurement. Using alkaline EtBr fluorescence in crude cell lysates, we detected crosslinks at frequencies in the range of 1.6 X 10(-7) per base pair. These levels were compatible with cell survival, attesting to the sensitivity of the measurement system. Crosslinkage affected hybridization as well. One crosslink prevented all alkali-denatured DNA contiguous in both strands with it from hybridizing to complementary DNA either on solid supports or in solution. Strand-length effects on crosslinkage and on reassociation caused solution hybridization levels to exceed those predicted by simple theory. In a quantitative, dot-blotting assay hybridization was linear up to membrane saturation by denatured, uncrosslinked DNA of any strand length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation.  相似文献   

16.
We have found previously that human lung cancers potently induce T lymphocyte IL-10 production in vitro. To assess the impact of enhanced T cell-derived IL-10 on antitumor immunity in vivo, we utilized transgenic mice expressing IL-10 under the control of the IL-2 promoter. We have shown previously that Lewis lung carcinoma cells (3LL) have more aggressive growth potential in IL-10 transgenic mice compared with control littermates. In this study, we show that transfer of T cells from IL-10 transgenic mice to control littermates transferred the IL-10 immunosuppressive effect and led to enhanced 3LL tumor growth. In addition to changes in T cell-mediated immunity, professional APC from IL-10 transgenic mice were found to have significantly suppressed capacity to induce MHC alloreactivity, CTL responses, and IL-12 production. Tumor Ag-pulsed dendritic cells from IL-10 transgenic mice also failed to generate antitumor reactivity. These results suggest that increased levels of T cell-derived IL-10 severely impair antitumor immunity in vivo, due to defects in both T cell and APC function.  相似文献   

17.
Calcium ion decreases the motional freedom of lipid molecules in isolated rat hepatocyte plasma membranes and in sonicated dispersions (liposomes) of the membrane lipid. The decrease in lipid fluidity was monitored by estimation of the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. At least two processes are involved in the mode of action of the cation. The first is direct, i.e., observed on addition of calcium to the liposomes, relatively rapid, with a half-time of 10-15 at 37 degrees C, proportional to the calcium concentration in the range 0-4 mM, and readily reversed on addition of excess EDTA. The second mechanism is indirected and requires the presence of the membrane proteins. It occurs relatively slowly, with a half-time of 75 min at 37 degrees C, tends to plateau with a calcium half-saturation concentration of approximately 1 mM, is of greater magnitude than the direct effect, and cannot be reversed on chelation of calcium by EDTA. Moreover, the indirect effect is specific for Ca2+ as compared to other divalent cations and it results in changes in the lipid composition. Stimulation of phospholipase A activity is likely but does not account for the change in fluidity. The direct action of calcium is ascribed to binding to the lipid bilayer, whereas the indirect action probably results from modulation of membrane-bound enzymes which can alter the lipid composition. The effects of calcium on the membrane lipid fluidity may underly certain of its regulatory actions on membrane functions.  相似文献   

18.
Induction and maintenance of Ag-specific tolerance are pivotal for immune homeostasis, prevention of autoimmune disorders, and the goal of transplantation. Recent studies suggest that certain cytokines, notably IL-10 and TGF-beta, may play a role in down-regulating immune functions. To further examine the role of cytokines in Ag-specific hyporesponsiveness, murine CD4+ T cells were exposed ex vivo to alloantigen-bearing stimulators in the presence of exogenous IL-10 and/or TGF-beta. Primary but not secondary alloantigen proliferative responses were inhibited by IL-10 alone. However, the combined addition of IL-10 + TGF-beta markedly induced alloantigen hyporesponsiveness in both primary and secondary MLR cultures. Alloantigen-specific hyporesponsiveness was observed also under conditions in which nominal Ag responses were intact. In adoptive transfer experiments, IL-10 + TGF-beta-treated CD4+ T cells, but not T cells treated with either cytokine alone, were markedly impaired in inducing graft-vs-host disease alloresponses to MHC class II disparate recipients. These data provide the first formal evidence that IL-10 and TGF-beta have at least an additive effect in inducing alloantigen-specific tolerance, and that in vitro cytokines can be exploited to suppress CD4+ T cell-mediated Ag-specific responses in vivo.  相似文献   

19.
The conditions for induction of B-cell inducing factor (BIF) by human peripheral blood T cells was investigated. BIF was assayed by induction of immunoglobulin secreting cells (ISC) in peripheral blood B (non-T) cells stimulated with Staphylococcus aureus bacteria strain Cowan I (Sac), and in the IgM cell line SKW6.4. Maximum BIF production occurred with high concentrations of the T-cell mitogens phytohemagglutinin, concanavalin A, and PWM. Dexamethasone (Dex) also induced BIF production in T cells at 10(-5) to 10(-7) M. At 10(-5) and 10(-6) M Dex, the T-cell supernatants had to be dialyzed before testing because Dex alone stimulated variable levels of ISC in both test B-cell assays. Dex did not enhance BIF production by T cells that were optimally stimulated by lectin. BIF levels were maximum by Day 2 of T-cell cultures and remained high at Days 3 and 4. In contrast, IL-2 reached a peak at Day 1 and declined drastically by Day 4. We previously showed that IL-2 at less than 100 U/ml did not induce ISC in B cells and did not alter ISC induction by BIF. Dex did not induce IL-2 production and inhibited IL-2 production induced by Con A, in contrast to the promoting effects of Dex on BIF production, providing further evidence for the independence of BIF and IL-2 production and B-cell stimulation.  相似文献   

20.
We evaluated the effect of morphine on human dendritic cells (DCs). Interestingly, immature DCs were found to express all 3 (mu, kappa, delta) opioid receptors on the cell surface. Chronic morphine treatment (10(-8) to 10(-12) M) during the development of DCs from monocytes augmented LPS-induced upregulation of HLA-DR, CD86, CD80, and CD83 and increased the T cell stimulatory capacity of DCs, which could be inhibited by naloxone, an opioid receptor antagonist. The change in surface phenotype was paralleled by a p38 MAPK-dependent decrease in IL-10 and increase in IL-12 secretion. Our data indicate that morphine exerts an immunostimulatory effect by modulating LPS-induced DC maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号