首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship of urinary kallikrein excretion to urine volume, and to urinary sodium and potassium excretions was studied in normal rats during furosemide diuresis and superimposed injection of amiloride, a K+-sparing diuretic. Continuous infusion of furosemide increased urinary kallikrein, sodium and potassium excretions and the urine volume. Amiloride injection during furosemide diuresis caused further increase in diuresis and natriuresis, but a prompt decrease in urinary kallikrein excretion to basal level, and potassium excretion to below the basal level. The significant correlation of urinary kallikrein excretion to urinary potassium excretion, but not to urine volume and urinary sodium excretion after amiloride injection suggests that the major determinant of urinary kallikrein excretion is renal potassium secretion through a mechanism that is affected by amiloride.  相似文献   

2.
The excretion rates of main urinary metabolite of PG F2α were measured radioimmunologically in 4 healthy persons and in 13 essential hypertensives. The resting values were 9.3±0.73 in the former and 10.4±2.17 ng/min in the latter. There was no significant differences between them. The excretion of the metabolite decresed prominently after the administration of furosemide. The percent decrease was 57% in healthy persons and 70% in essential hypertension. The percent result supports that furosemide inhibit the catabolism of PG F2α.  相似文献   

3.
This study examined the changes in the circulating level of endogenous atrial natriuretic factor during diuresis and natriuresis produced by acute volume expansion in anesthetized rats with either bilateral atrial appendectomy (n = 9) or sham operation (n = 9). Following control measurements in the sham-operated rats, 1% body weight volume expansion with isotonic saline produced an increment in urinary sodium excretion of over 4 mueq/min (P less than 0.05) while urine volume increased by more than 20 microliter/min (P less than 0.05). These responses were associated with a significant increase in immunoreactive plasma atrial natriuretic factor from a baseline value of 82 +/- 10 pg/ml to a level of 120 +/- 14 pg/ml (P less than 0.05). In contrast, in the group of rats with bilateral atrial appendectomy an identical degree of volume expansion increased urinary sodium excretion and urine volume by only 0.61 mueq/min (P less than 0.05) and 3.07 microliter/min (P less than 0.05), respectively. In this group, immunoreactive plasma atrial natriuretic factor remained statistically unchanged from a control value of 70 +/- 12 pg/ml to a level of 82 +/- 16 pg/ml (P greater than 0.05). Comparison of the two groups indicates that the natriuresis, diuresis, and plasma atrial natriuretic factor levels during volume expansion were significantly reduced in the rats with bilateral atrial appendectomy. No differences in mean arterial pressure and heart rate were observed between the two groups. These data demonstrate that removal of both atrial appendages in the rat attenuated the release of atrial natriuretic factor during volume expansion; and this effect, in turn, was associated with a reduction in the natriuretic and diuretic responses.  相似文献   

4.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concetrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 ± 106 to 1035 ± 79 mosmol/kg·H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 ± 14.0 to 205.5 ± 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg·hr), renal PGE2 excretion was reduced to 22.3 ± 5.1 pg/min prior to micropuncture and it remained low at 8.9 ± 1.8pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 ± 122 before and 1782 ± 96 mosmol/kg·H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

5.
We have found that arginine vasopressin (AVP) (10 pg/ml) stimulates urinary kallikrein in the isolated erythrocyte perfused rat kidney. (In this model, perfusate flow rate approximates blood flow rates in vivo and morphology is normal.) Urinary kallikrein excretion rose from 6.9 +/- 0.8 to 14.9 +/- 2.4 ng/min 20 min after the addition of AVP to the perfusate, and then fell towards baseline levels over the next 30 min. 1-Desamino-8-D-AVP (8 pg/ml) caused a comparable increase in kallikrein excretion. Prostaglandin synthesis inhibition with indomethacin did not alter the stimulatory effect of AVP on kallikrein excretion. Parathyroid hormone 1-34 (144 ng/ml) and calcitonin (102 ng/ml) also increased urinary kallikrein. Kallikrein excretion rose from 9.1 +/- 2.0 to 24 +/- 4.5 ng/min in response to calcitonin and from 8.3 +/- 1.6 to 43.7 +/- 3.4 ng/min following the addition of parathyroid hormone to the perfusate. Kallikrein was found to accumulate in the perfusate in a linear fashion. Based on the slope of the relationship between perfusate kallikrein and time, the rate of release of kallikrein into the perfusate was estimated to be 0.79 ng/min in control kidneys. The rate of release of kallikrein into the perfusate in kidneys treated with AVP was the same (0.74 ng/min). Thus while kallikrein is released into the perfusate, this process is not influenced by AVP. In conclusion, AVP stimulates release of kallikrein into the urine (but not the perfusate) independently of systemic events. The effect of AVP is not mediated by prostaglandins. This effect of AVP is mediated via stimulation of the V2 receptor and also occurs in response to two other hormones (calcitonin and parathyroid hormone) that are known to stimulate adenyl cyclase in the rat distal nephron.  相似文献   

6.
W B Campbell  P E Ward 《Life sciences》1979,24(21):1995-2001
Substance P is a potent vasodilatory, diuretic, and natriuretic agent. Since subcellular fractions of the kidney rapidly inactivate substance P in vitro, the present study was designed to examine this observation invivo in anesthetized dogs. Arterial, renal venous, and urinary levels of immunoreactive substance P were determined by radioimmunoassay and were found to be 117±11, 128±12 and 659±104 pg/ml, respectively. The urinary and fractional excretion of immunoreactive substance P were 122±22 pg/min and 6.6±2.0%, respectively. When substance P was infused intravenously, the arterial and renal venous plasma levels of immunoreactive material increased whereas the urinary levels did not change. Infusions of 50 ng/kg/min of substance P significantly decreased mean arterial pressure, urinary volume, creatinine clearance as well as the urinary excretion, clearance, and fractional excretion of immunoreactive substance P. During intrarenal infusion of 125I-(8-Tyr) substance P, high levels of radioactive material were found in the urine and renal venous plasma which failed to migrate on thin layer chromatography with intact 125I-(8-Tyr) substance P. Thus under these conditions, intact substance P was not released from the kidney into the urine or renal venous blood, but instead circulating substance P was rapidly and completely metabolized, probably by both vascular and tubular elements of the kidney.  相似文献   

7.
The purpose of this study was to investigate the effect of norepinephrine and vasopressin on urinary kallikrein excretion in the rat. Two studies were undertaken: (a) acute experiments in which the rats were infused with 30% dextrose in water with the addition of norepinephrine or vasopressin, (b) chronic experiments in which the drugs were infused during seven days through an osmotic minipump. In acute experiments, urinary kallikrein excretion increased without modification in urinary flow and glomerular filtration rate. In chronic experiments, urinary kallikrein excretion was not modified in norepinephrine-treated rats and decreased in vasopressin-infused animals. This decrease followed the modifications of the urine flow. In chronic experiments the dextrose infusion increased urinary kallikrein excretion. In all the groups studied a positive correlation between urine flow and urinary kallikrein excretion was observed. It is concluded that norepinephrine and vasopressin are important stimulators of the urinary kallikrein excretion only in those circumstances where it is necessary to eliminate an excess of water.  相似文献   

8.
The etiology of tumor-induced hypercalcemia was investigated in a transplantable Leydig cell tumor of the Fischer rat. In this model, serum calcium rose from a baseline of 10.4 ± 0.3 m mg/dl to 12.5 ± 0.4 mg/dl at day 10 and 16.4 ± 1.3 mg/dl (p<0.001) at day 13 post transplant. Urinary calcium also increased from 1.52 ± 0.17 mg/d to 3.52 ± 0.72 mg/d (Day 12, p<0.01). Serum phosphate decreased from a baseline of 7.5 ± 0.3 mg/dl to 5.5 ± 0.6 mg/dl at day 13 (p<0.05). At day 13 serum immunoreactive parathyroid hormone levels fell 76% from baseline (p<0.01). Calcitonin increased from 59 ± 2 pg/ml to 88 ± 9 pg/ml (p<0.01). The plasma prostaglandin E metabolite, 13, 14-dihydro-15-keto-PGE2 increased from 407 ± 103 pg/dl to 647 ± 62 pg/ml (p<0.05) and the active Vit D compound 1, 25(OH)2D increased from 94.8 ± 5.2 pg/ml to 162.3 ± 11.8 pg/ml (p<0.01). Urinary cyclic AMP did not decrease in parallel with the parathyroid hormone level and, in fact, increased from 146 ± 3 nmol/d to 172 ± 27 nmol/d (NS). Administration of the cyclooxygenase inhibitor indomethacin (20 mg/Kg/d) or hydrocortisone (50 mg/Kg/d) did not prevent the development of hypercalcemia. This model is similar to many patients with humoral hypercalcemia of malignancy who demonstrate suppression of parathyroid hormone with elevated urinary cyclic AMP excretion and may prove useful in the understanding of the responsible mechanisms.  相似文献   

9.
Increased or unchanged urinary zinc excretion has been reported in hypertension. In the present article, this observation was confirmed in a group of 10 untreated hypertensive patients of both sexes that had no diabetes or obesity. The 24-h zinc excretion was significantly different between the patients: 7.46±3.01 μmol and healthy controls: 5.19±2.19 μmol (p<0.025). After a 1-mo treatment with 4 mg perindopril per day, a decrease of urinary zinc was observed until it reached levels not significantly different from those of the healthy controls (5.98±2.13 μmol). The decrease was significantly different from that of the pretreatment values (p<0.05).  相似文献   

10.
The effects of infusion of a large amount of aldosterone into the renal artery of isolated perfused hog kidney on the release of renin, prostaglandins (PG) and kinin and the excretion of urinary kallikrein were investigated. Infusion of aldosterone at a rate of 100 ng/min (100 to 800 ng/ml of perfusate) resulted in significant releases of renin, PG (PGE2, 6-0-PGF), and kinin and increase in urinary kallikrein. Infusion of aldosterone and an inhibitor of kallikrein, aprotinin, decreased the releases of renin, PG and kinin and infusion of aldosterone with indomethacin decreased the release of PG but increased that of kinin and urinary kallikrein without significant change in renin releases. These findings suggest that the release of renin by aldosterone may result from synergic effects of renal PG and the kallkrein-kinin system.  相似文献   

11.
Adipose tissue is highly vascularized implying that angiogenesis takes place in its expansion. The aim of this study was to compare the concentrations of members of the vascular endothelial growth factor (VEGF) family in obesity. Serum concentrations of VEGFs were analyzed in 15 lean (BMI 20.3±2.5 kg/m2) and 24 obese (BMI 47.6±5.9 kg/m2) volunteers. Obese patients showed significantly increased circulating VEGF-A (150±104 vs. 296±160 pg/ml; P<.05), VEGF-B (2788±1038 vs. 4609±2202 arbitrary units; P<.05) and VEGF-C (13 453±5750 vs. 17 635±5117 pg/ml; P<.05) concentrations. Interestingly, levels of VEGF-D were reduced in obese individuals (538±301 vs. 270±122 pg/ml; P<.01). In addition, VEGF-A significantly decreased after weight loss following Roux-en-Y gastric bypass (BMI from 46.0±8.0 to 28.9±4.2 kg/m2 P<.0001 vs. initial) from 345±229 to 290±216 pg/ml (P<.01). Moreover, in order to corroborate the human findings VEGF-A levels were analyzed during the expansion of adipose tissue in two dynamic models of murine obesity. Serum VEGF-A was significantly increased after 12 weeks on a high-fat diet (43.3±9.0 vs. 29.7±9.1 pg/ml; P<.01) or in ob/ob mice (52.2±18.0 vs. 29.2±7.7 pg/ml; P<.01) and was normalized after leptin replacement in the latter (32.4±14.0 pg/ml; P<.01 vs. untreated ob/ob). Our data indicates the involvement of these factors in the expansion of adipose tissue that takes place in obesity in relation to the need for increased vascularization, suggesting that manipulation of the VEGF system may represent a potential target for the pharmacological treatment of obesity.  相似文献   

12.
Previous studies with different results have suggested that total and bioavailable testosterone levels are modified by physical exercise. Such changes may be related to modifications in cortisol levels and could be reflected in some urine androgens. To determine how weight lifting training may affect serum and urinary androgens, we measured total serum testosterone (T), cortisol, sex hormone binding globulin (SHBG) and urinary testosterone, epitestosterone, androsterone, and etiocholanolone, in a group of 19 elite weight lifters after 20 weeks of training. SHBG increased (from 27.5 ± 9.5 to 34.7 ± 8.1 nM, p < 0.05) whereas T/SHBG decreased significantly (from 1.10 ± 0.4 to 0.85 ± 0.3, p < 0.05). Serum total testosterone and cortisol did not change significantly. In urine, androsterone and etiocholanolone decreased significantly, whereas testosterone and epitestosterone remained unchanged. Changes in T/SHBG were related positively with changes in urinary androgens (r = 0.680, p < 0.01), and changes in SHBG were negatively related with changes in urinary androgens (r = −0.578, p < 0.01). These results suggest that intense physical activity may have an influence on the elimination of androgenic hormones due mainly to changes in their transporting protein SHBG.  相似文献   

13.
Both mouse and rat pancreatic islet β-cells were recently found to express aquaglyceroporin 7 (AQP7). In the present study, the expression and role of AQP7 in the function of BRIN-BD11 cells were investigated. AQP7 mRNA and protein were detected by RT-PCR and Western blot analysis, respectively. In an isoosmolar medium, the net uptake of [2-3H]glycerol displayed an exponential time course reaching an equilibrium plateau value close to its extracellular concentration. Within 2 min of incubation in a hypotonic medium (caused by a 50 mM decrease in NaCl concentration), the [2-3H]glycerol uptake averaged 143.2 ± 3.8% (n = 24; P < 0.001) of its control value in isotonic medium, declining thereafter consistently with previously demonstrated volume regulatory decrease. When isoosmolarity was restored by the addition of 100 mM urea to the hypotonic medium, [2-3H]glycerol uptake remained higher (112.1 ± 2.8%, n = 24; P < 0.001) than its matched control under isotonic conditions, indicating rapid entry of urea and water. Insulin release by BRIN-BD11 cells was 3 times higher in hypotonic than in isotonic medium. When glycerol (100 mM) or urea (100 mM) were incorporated in the hypotonic medium, the insulin release remained significantly higher than that found in the control isotonic medium, averaging respectively 120.2 ± 4.2 and 107.0 ± 3.8% of the paired value recorded in the hypotonic medium. These findings document the rapid entry of glycerol and urea in BRIN-BD11 cells, likely mediated by AQP7. J. Cell. Physiol. 221: 424–429, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

14.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

15.
24-h urinary kallikrein excretion in male Sprague-Dawley rats was measured before and after 14 days with 100 mM potassium chloride as drinking fluid ad libitum. Urinary kallikrein excretion increased in K+-adaptation. The increase was greater when the rats were given distilled water rather than 100 mM sodium chloride to drink prior to the potassium chloride. The urinary potassium excretion increased in all rats studied. The urinary sodium excretion, urine volume and fluid intake increased significantly in rats that had distilled water to drink prior to the KCl. In marked contrast, when rats were offered NaCl prior to KCl, the urinary sodium excretion was unaffected while the urine volume and fluid intake decreased significantly. This study shows that prior NaCl intake abolishes the natriuretic and diuretic effects of KCl load and only suppresses the increase in urinary kallikrein excretion. This suggests that K+ secretory activity at the distal tubules is the major determinant of the release of renal kallikrein in the rat.  相似文献   

16.
Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a hypotonic challenge. Confocal laser scanning microscopy was used for imaging superficial zone chondrocytes in intact and degraded cartilage exposed to a hypotonic challenge. Fourier transform infrared microspectroscopy, polarized light microscopy, and mechanical testing were used to quantify differences in proteoglycan and collagen content, collagen orientation, and biomechanical properties, respectively, between the intact and degraded cartilage. Collagen content decreased and collagen orientation angle increased significantly (p < 0.05) in the superficial zone cartilage after collagenase treatment, and the instantaneous modulus of the samples was reduced significantly (p < 0.05). Normalized cell volume and height 20 min after the osmotic challenge (with respect to the original volume and height) were significantly (p < 0.001 and p < 0.01, respectively) larger in the intact compared to the degraded cartilage. These findings suggest that the mechanical environment of chondrocytes, specifically collagen content and orientation, affects cell volume and shape changes in the superficial zone articular cartilage when exposed to osmotic loading. This emphasizes the role of collagen in modulating cartilage mechanobiology in diseased tissue.  相似文献   

17.
Urinary kallikrein excretion was positively correlated with urine flow and negatively with urinary osmolality, it was also positively correlated with inulin space and its both components, plasma volume and interstitial space. We postulate that increased extracellular fluid increases kallikrein excretion and kallikrein avoids water reabsorption leading to a decrease in the extracellular fluid.  相似文献   

18.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

19.
Background. Only a few studies have reported on the effect of high-dose insulin (HDI) infusion on cardiac function in healthy volunteers. Methods. We studied ten healthy volunteers with low-dose dobutamine (LDD, 10 µg/kg/min) echo­cardio­graphy and HDI echocardiography (insulin administration for one hour) by volume and Doppler analysis. Results. During LDD, cardiac output increased from 5.7±1.3 l/min to 9.0±2.1 l/min (p<0.001) and during HDI from 5.5±1.2 l/min to 6.2±1.1 l/min (p=0.048). Increase was not only due to increase in frequency, which was only present in the LDD study, but also due to increase in stroke volume (from 82±15 ml to 110±23 ml, p<0.001 during LDD and from 82±16 ml to 93±24 ml, p=0.014 during HDI). The increase in stroke volume was the result of a decrease in end-systolic volume with an unchanged end-diastolic volume. Conclusion. High-dose insulin infusion results in increased cardiac output by improving systolic myocardial function. (Neth Heart J 2010;18:183-9.)  相似文献   

20.
Cystinuria is an autosomal recessive disease that causes l-cystine precipitation in urine and nephrolithiasis. Disease severity is highly variable; it is known, however, that cystinuria has a more severe course in males. The aim of this study was to compare l-cystine metastability in first-morning urine collected from 24 normal female and 24 normal male subjects. Samples were buffered at pH 5 and loaded with l-cystine (0.4 and 4 mM final concentration) to calculate the amount remaining in solution after overnight incubation at 4 °C; results were expressed as Z scores reflecting the l-cystine solubility in each sample. In addition, metabolomic analyses were performed to identify candidate compounds that influence l-cystine solubility. l-cystine solubility Z score was +0.44 ± 1.1 and ?0.44 ± 0.70 in female and male samples, respectively (p < 0.001). Further analyses showed that the l-cystine solubility was independent from urine concentration but was significantly associated with low urinary excretion of inosine (p = 0.010), vanillylmandelic acid (VMA) (p = 0.015), adenosine (p = 0.029), and guanosine (p = 0.032). In vitro l-cystine precipitation assays confirmed that these molecules induce higher rates of l-cystine precipitation in comparison with their corresponding dideoxy molecules, used as controls. In silico computational and modeling analyses confirmed higher binding energy of these compounds. These data indicate that urinary excretion of nucleosides and VMA may represent important factors that modulate l-cystine solubility and may represent new targets for therapy in cystinuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号