首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fenton AW  Reinhart GD 《Biochemistry》2002,41(45):13410-13416
Escherichia coli phosphofructokinase 1 (EcPFK) is a homotetramer with four active and four allosteric sites. Understanding of the structural basis of allosteric activation of EcPFK by MgADP is complicated by the multiplicity of binding sites. To isolate a single heterotropic allosteric interaction, hybrid tetramers were formed between wild-type and mutant EcPFK subunits in which the binding sites of the mutant subunits have decreased affinity for their respective ligands. The 1:3 (wild-type:mutant) hybrid that contained only one native active site and one native allosteric site was isolated. The affinity for the substrate fructose-6-phosphate (Fru-6-P) of a single wild-type active site is greatly decreased over that displayed by the wild-type tetramer due to the lack of homotropic activation. The free energy of activation by MgADP for this heterotropic interaction is -0.58 kcal/mol at 8.5 degrees C. This compares to -2.87 kcal/mol for a hybrid with no homotropic coupling but all four unique heterotropic interactions. Therefore, the isolated interaction contributes 20% of the total heterotropic coupling. By comparison, wild-type EcPFK exhibits a coupling free energy between Fru-6-P and MgADP of -1.56 kcal/mol under these conditions, indicating that the effects of MgADP are diminished by a homotropic activation equal to -1.3 kcal/mol. These data are not consistent with a concerted allosteric mechanism.  相似文献   

2.
Phosphofructokinase from Escherichia coli (EcPFK) is a homotetramer with four active sites and four allosteric sites. Understanding the allosteric activation of EcPFK by MgADP has been complicated by the complex web of possible interactions, including active site homotropic interactions, allosteric site homotropic interactions, and heterotropic interactions between active and allosteric sites. The current work has simplified this web of possible interactions to a series of single heterotropic interactions by forming and isolating hybrid tetramers. Each of the four unique heterotropic interactions have independently been isolated and compared to a control that has all four of the unique heterotropic interactions. If the interactions are labeled with the distances between interacting ligands, the 45-A interaction contributes 20% +/- 1%, the 33-A interaction contributes 34% +/- 1%, the 30-A interaction contributes 21% +/- 1%, and the 23-A interaction contributes 25% +/- 1% with respect to the total free energy of MgADP/fructose 6-phosphate (Fru-6-P) activation in the control. The free energies of the isolated interactions sum to 100% +/- 2% of the total. Therefore, the four unique interactions are all contributors to activation, are nonequivalent, and are additive.  相似文献   

3.
A tryptophan-shifted mutant of phosphofructokinase (PFK) from Bacillus stearothermophilus has been constructed. This mutant, which is functionally similar to wild-type, provides the opportunity to examine the allosteric properties of PFK under equilibrium conditions. The unique fluorescence properties of the tryptophan-shifted mutant enzyme, W179F/F230W, have been utilized to deduce the thermodynamics of ligand binding and the allosteric perturbations in the absence of catalytic turnover. Specifically, phospho(enol)pyruvate (PEP) and MgADP binding to the mutant PFK can be directly observed using tryptophan fluorescence, and dissociation constants for these ligands have been measured to be equal to 2.71 +/- 0.04 and 90.4 +/- 3.5 microM, respectively. In addition, the homotropic couplings for the allosteric ligands have been assessed for the first time. PEP binds cooperatively with a Hill number of 2.9 +/- 0.3, while MgADP binding is not cooperative. The equilibrium couplings between these ligands and the substrate fructose 6-phosphate (Fru-6-P) have also been determined and follow the same trends with temperature observed under steady-state kinetic assay conditions using wild-type PFK, indicating that the presence of bound MgATP has little influence on the allosteric interactions. Like wild-type PFK, the coupling free energies for the mutant result from largely compensating enthalpy and entropy components at 25 degrees C. Furthermore, the sign of each coupling free energy, which signifies the nature of the allosteric effect, is opposite that of the enthalpy contribution and is therefore due to the larger absolute value of the associated entropy change. This characteristic stands in direct contrast to the thermodynamic basis of the allosteric response in the homologous PFK from E. coli in which the sign of the coupling free energy is established by the sign of the coupling enthalpy.  相似文献   

4.
To study the allosteric transition in pig kidney fructose 1,6-bisphosphatase (FBPase), we constructed hybrids in which subunits have either their active or regulatory sites rendered nonfunctional by specific mutations. This was accomplished by the coexpression of the enzyme from a plasmid that contained two slightly different copies of the cDNA. To resolve and purify each of the hybrid enzymes, six aspartic acid codons were added before the termination codon of one of the cDNAs. The addition of these Asp residues to the protein did not alter the kinetic or allosteric properties of the resulting FBPase. Expression of the enzyme from a dual-gene plasmid resulted in the production of a set of five different enzymes (two homotetramers and three hybrid tetramers) that could be purified by a combination of affinity and anion-exchange chromatography because of the differential charge on each of these species. The hybrid with one subunit that only had a functional regulatory site (R) and three subunits that only had a functional active site (A) exhibited biphasic AMP inhibition. Analysis of these data suggest that the binding of AMP to the R subunit is able to globally alter the activity of the other three A subunits. The hybrid composed of two R and two A subunits is completely inhibited at an AMP concentration of approximately 0.5 mM, 100-fold less than the concentration required to fully inhibit the A(4) enzyme. The monophasic nature of this cooperative inhibition suggests that the AMP binding to the two R subunits is sufficient to completely inhibit the enzyme and suggests that the binding of AMP to only two of the four subunits of the enzyme induces the global allosteric transition from the R to the T state.  相似文献   

5.
The reduction of purine nucleoside diphosphates by murine ribonucleotide reductase requires catalytic (R1) and free radical-containing (R2) enzyme subunits and deoxynucleoside triphosphate allosteric effectors. A quantitative 16 species model is presented, in which all pertinent equilibrium constants are evaluated, that accounts for the effects of the purine substrates ADP and GDP, the deoxynucleoside triphosphate allosteric effectors dGTP and dTTP, and the dimeric murine R2 subunit on both the quaternary structure of murine R1 subunit and the dependence of holoenzyme (R1(2)R2(2)) activity on substrate and effector concentrations. R1, monomeric in the absence of ligands, dimerizes in the presence of substrate, effectors, or R2(2) because each of these ligands binds R1(2) with higher affinity than R1 monomer. This leads to apparent positive heterotropic cooperativity between substrate and allosteric effector binding that is not observed when binding to the dimeric protein itself is evaluated. Allosteric activation results from an increase in k(cat) for substrate reduction upon binding of the correct effector, rather than from heterotropic cooperativity between effector and substrate. Neither the allosteric site nor the active site displays nucleotide base specificity: dissociation constants for dGTP and dTTP are nearly equivalent and K(m) and k(cat) values for both ADP and GDP are similar. R2(2) binding to R1(2) shows negative heterotropic cooperativity vis-à-vis effectors but positive heterotropic cooperativity vis-à-vis substrates. Binding of allosteric effectors to the holoenzyme shows homotropic cooperativity, suggestive of a conformational change induced by activator binding. This is consistent with kinetic results indicating full dimer activation upon binding a single equivalent of effector per R1(2)R2(2).  相似文献   

6.
F T Lau  A R Fersht 《Biochemistry》1989,28(17):6841-6847
A systematic study by site-directed mutagenesis has been conducted on the effector site of phosphofructokinase from Escherichia coli to delineate the role of side chains in binding the allosteric activator, GDP, and inhibitor, PEP, and to search for key residues in the allosteric transtion. Target residues were identified from the crystal structure of the enzyme-nucleoside diphosphate complex. It is found that both activator and inhibitor bind to the same set of amino acid side chains. Deletion of positively charged groups (Arg21, Arg25, Arg54, Arg154, and Lys213 mutated to alanine) weakens binding of both effectors by 2-3 kcal/mol, consistent with the disruption of charged hydrogen bonds. Residue Glu187, which is known from the crystal structure to bind the coordinated Mg2+ ion of GDP, is found to have a unique behavior on mutation and appears to be crucial in triggering the allosteric transition. All other residues mutated simply weaken binding of both PEP and GDP in a parallel manner. However, mutation of Glu----Ala187 reverses the roles of GDP and PEP, causing GDP to become an allosteric inhibitor and PEP an activator. Mutation of Glu----Gln187 has only a small effect on the binding of PEP, and both PEP and GDP are inhibitors. Studies are described in which mutations in different subunits of a tetrameric complex complement each other. The effector site is composed of residues from two subunits. In particular, Arg21 and Lys213 in each site are from different subunits. Mutations of either one of these residues abolishes activation by GDP of the homotetramer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Kimmel JL  Reinhart GD 《Biochemistry》2001,40(38):11623-11629
Phosphofructokinase from Bacillus stearothermophilus (BsPFK) is a model allosteric enzyme system in which the interactions between substrates and allosteric effectors have been extensively studied. However, the oligomeric nature of BsPFK has made it difficult to determine the molecular basis of the allosteric regulation because of the multitude of different types of heterotropic and homotropic interactions that are possible between the four active sites and four allosteric sites in the native tetramer. In an attempt to alleviate the complexity of the system and thereby allow the quantitation of a single interaction between one active site and one allosteric site, site-directed mutagenesis has been coupled with a hybrid-forming scheme to create and isolate a tetramer of BsPFK in which only a single active site and a single allosteric site are capable of binding their respective ligands with high (i.e., near wild type) affinity. Characterization of this single allosteric interaction indicates that the free energy involved in the inhibition by the allosteric effector phosphoenolpyruvate (PEP) is 1.48 +/- 0.15 kcal/mol compared to the 3.58 +/- 0.02 kcal/mol measured for the enzyme.  相似文献   

8.
T J Bollenbach  T Nowak 《Biochemistry》2001,40(43):13088-13096
Yeast pyruvate kinase (YPK) is regulated by intermediates of the glycolytic pathway [e.g., phosphoenolpyruvate (PEP), fructose 1,6-bisphosphate (FBP), and citrate] and by the ATP charge of the cell. Recent kinetic and thermodynamic data with Mn(2+)-activated YPK show that Mn(2+) mediates the allosteric communication between the substrate, PEP, and the allosteric effector, FBP [Mesecar, A., and Nowak, T. (1997) Biochemistry 36, 6792, 6803]. These results indicate that divalent cations modulate multiligand interactions, and hence cooperativity with YPK. The nature of multiligand interactions on YPK was investigated in the presence of the physiological divalent activator Mg(2+). The binding interactions of PEP, Mg(2+), and FBP were monitored by fluorescence spectroscopy. The binding data were subject to thermodynamic linked-function analysis to determine the magnitudes of the multiligand interactions governing the allosteric activation of YPK. The two ligand coupling free energies between PEP and Mg(2+), PEP and FBP, and FBP and Mg(2+) are 0.88, -0.38, and -0.75 kcal/mol, respectively. The two-ligand coupling free energies between PEP and Mn(2+) and FBP and Mn(2+) are more negative than those with Mg(2+) as the cation. This indicates that the interactions between the divalent cation and PEP with YPK are different for Mg(2+) and Mn(2+) and that the interaction is not simply electrostatic in nature, as originally hypothesized. The magnitude of the heterotropic interaction between the metal and FBP is similar with Mg(2+) and Mn(2+). The simultaneous binding of Mg(2+), PEP, and FBP to YPK is favored by 3.21 kcal/mol compared to independent binding. This complex is destabilized by 3.30 kcal/mol relative to the analogous YPK-Mn(2+)-PEP-FDP complex. Interpretation of K(d) values when cooperative binding occurs must be done with care as these are not simple thermodynamic constants. These data demonstrate that the divalent metal, which activates phosphoryl transfer in YPK, plays a key role in modulating the various multiligand interactions that define the overall allosteric properties of the enzyme.  相似文献   

9.
A comprehensive set of hybrid molecules of aspartate transcarbamylase (ATCase) from Escherichia coli has been constructed of wild-type and mutationally altered catalytic chains. The mutant enzymes that were virtually devoid of activity contained a replacement of Gly-128 in the catalytic polypeptide chains by either Asp or Arg. The kinetic properties of these hybrid enzyme-like molecules were analyzed to evaluate the basis for the unusual quaternary constraint demonstrated by an intersubunit hybrid containing one wild-type catalytic subunit, one inactive mutant subunit (containing the Gly to Asp replacement), and three wild-type regulatory subunits. A similar intersubunit hybrid was constructed from the wild-type catalytic subunit and the mutant in which Gly-128 was replaced by Arg, and it too demonstrated a pronounced decrease in activity relative to that expected for a hybrid containing three active sites. Moreover, neither of these hybrid holoenzymes exhibited the cooperativity with respect to aspartate that is characteristic of wild-type ATCase. In contrast, hybrid holoenzymes containing at least one wild-type chain in each catalytic subunit showed cooperativity. Also, hybrid enzymes containing different arrangements of five, four, three, or two wild-type catalytic chains with an appropriate complement of mutant chains had specific activities proportional to the number of wild-type chains in the holoenzymes. Exceptions were observed only in hybrids in which one of the two subunits in the holoenzyme was composed completely of mutant catalytic chains. For these hybrids the negative complementation was manifested as a much lower enzyme activity than expected from the number of wild-type chains in the enzyme and the loss of cooperativity. Thus, the activity and allosteric properties of these hybrids is dependent on the arrangement of catalytic chains in the holoenzyme, in contrast to results obtained for hybrids containing native and chemically modified catalytic chains. Intrasubunit hybrid catalytic trimers containing one or two wild-type chains exhibited one-third and two-thirds the activity of the intact wild-type catalytic subunit, respectively, indicating the dominant negative effect that was seen in intersubunit hybrid holoenzymes is absent within trimers.  相似文献   

10.
Linked-function origins of cooperativity in a symmetrical dimer   总被引:1,自引:0,他引:1  
The thermodynamic origins of substrate binding cooperativity in a dimeric enzyme that can bind one substrate (A) and one allosteric ligand (X) to each of two identical subunits are discussed. It is assumed that maximal activity is not subject to allosteric modification and that the substrates and allosteric ligands achieve binding equilibrium in the steady state. Each uniquely ligated form is assumed to be capable of exhibiting unique binding properties, and only the principles of thermodynamic linkage are used to constrain the system further. The explicit relationship between the Hill coefficient, the concentration of X, and the magnitudes of the relevant coupling free energies and dissociation constants is derived. In the absence of X only the homotropic coupling between substrate sites contributes to a nonhyperbolic substrate saturation profile. An allosteric ligand, X, can alter the cooperativity in two distinct ways, one mechanism being manifested when X is saturating and the only only when X is present at saturating concentrations. By evaluating the concentration of substrate required to produce half-maximal velocity as a function of [X], as well as the Hill coefficients when X is absent and fully saturating, the dissociation and coupling constants most important for understanding the mechanisms of allosteric action in an enzyme of this type can be determined.  相似文献   

11.
The pH and temperature dependence of the allosteric properties of phosphofructokinase (PFK) from Bacillus stearothermophilus have been studied from 5 to 9 and 6 to 40 degrees C, respectively. Throughout this pH and temperature range the allosteric ligands MgADP and phospho(enol)pyruvate (PEP) have no effect on kcat. The dissociation constants of the substrate, fructose 6-phosphate, and the allosteric ligands, as well as the absolute value of the coupling free energies between these ligands, all increase when the pH is raised, indicating that the inhibition by PEP and the activation by MgADP increase despite each ligand's somewhat lower affinity. However, the constituent coupling enthalpies and entropies substantially diminish in absolute value as pH is increased, suggesting that the magnitudes of molecular perturbations engendered by the binding of allosteric ligands do not correlate with the magnitudes of the functional consequences of those perturbations. Temperature and pH exert their influence on the observed allosteric behavior by changing the relative contributions made by the largely compensating DeltaH and TDeltaS terms to the coupling free energy.  相似文献   

12.
A hybrid version of Escherichia coli aspartate transcarbamoylase was investigated in which one catalytic subunit has the wild-type sequence, and the other catalytic subunit has Glu-239 replaced by Gln. Since Glu-239 is involved in intersubunit interactions, this hybrid could be used to evaluate the extent to which T state stabilization is required for homotropic cooperativity and for heterotropic effects. Reconstitution of the hybrid holoenzyme (two different catalytic subunits with three wild-type regulatory subunits) was followed by separation of the mixture by anion-exchange chromatography. To make possible the resolution of the three holoenzyme species formed by the reconstitution, the charge of one of the catalytic subunits was altered by the addition of six aspartic acid residues to the C terminus of each of the catalytic chains (AT-C catalytic subunit). Control experiments indicated that the AT-C catalytic subunit as well as the holoenzyme formed with AT-C and wild-type regulatory subunits had essentially the same homotropic and heterotropic properties as the native catalytic subunit and holoenzyme, indicating that the addition of the aspartate tail did not influence the function of either enzyme. The control reconstituted holoenzyme, in which both catalytic subunits have Glu-239 replaced by Gln, exhibited no cooperativity, an enhanced affinity for aspartate, and essentially no heterotropic response identical to the enzyme isolated without reconstitution. The hybrid containing one normal and one mutant catalytic subunit exhibited homotropic cooperativity with a Hill coefficient of 1.4 and responded to the nucleotide effectors at about 50% of the level of the wild-type enzyme. Small angle x-ray scattering experiments with the hybrid enzyme indicated that in the absence of ligands it was structurally similar, but not identical, to the T state of the wild-type enzyme. In contrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in the scattering pattern, whereas the bisubstrate analog N-phosphonoacetyl-L-aspartate induced a significant change in the scattering pattern indicating the transition to the R-structural state. These data indicate that in the hybrid enzyme only three of the usual six interchain interactions involving Glu-239 are sufficient to stabilize the enzyme in a low affinity, low activity state and allow an allosteric transition to occur.  相似文献   

13.
Two hybrid versions of Escherichia coli aspartate transcarbamoylase were studied to determine the influence of domain closure on the homotropic and heterotropic properties of the enzyme. Each hybrid holoenzyme had one wild-type and one inactive catalytic subunit. In the first case the inactive catalytic subunit had Arg-54 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 17,000-fold reduction in activity, no loss in substrate affinity, and an R state structurally identical to that of the wild-type enzyme. In the second case, the inactive catalytic subunit had Arg-105 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 1,100-fold reduction in activity, substantial loss in substrate affinity, and loss of the ability to be converted to the R state. Thus, the R54A substitution results in a holoenzyme that can undergo closure of the catalytic chain domains to form the high activity, high affinity active site and to undergo the allosteric transition, whereas the R105A substitution results in a holoenzyme that can neither undergo domain closure nor the allosteric transition. The hybrid holoenzyme with one wild-type and one R54A catalytic subunit exhibited the same maximal velocity per active site as the wild-type holoenzyme, reduced cooperativity, and normal heterotropic interactions. The hybrid with one wild-type and one R105A catalytic subunit exhibited significantly reduced maximal velocity per active site as compared with the wild-type holoenzyme, reduced cooperativity, and substantially reduced heterotropic interactions. Small angle x-ray scattered was used to verify that the R105A-containing hybrid could attain an R state structure. These results indicate the global nature of the conformational changes associated with the allosteric transition in the enzyme. If one catalytic subunit cannot undergo domain closure to create the active sites, then the entire molecule cannot attain the high activity, high activity R state.  相似文献   

14.
In vitro subunit hybridization was used to explore the basis of putative allosteric behaviour in clostridial glutamate dehydrogenase. C320S and D165S mutant enzymes were chosen to construct the hybrid proteins. The C320S mutant protein is fully active and shows normal allosteric properties but lacks the reactive cysteine. D165S is capable of binding both glutamate and NAD(+) but is catalytically inactive. The mutant proteins were denatured separately in 4 M urea, mixed in a 5 : 1 (D165S/C320S) ratio and diluted into a refolding mixture composed of 2 mM NAD(+), 1 M fluoride and artificial chaperones (4 mM polyoxyethylene 10 lauryl ether and 1.6 mM beta-cyclodextrin). Under these conditions approximately 50% refolding was achieved for both mutant proteins separately. The renatured mixture was concentrated and separated from denatured proteins and the components of the refolding mixture by ultrafiltration and ion-exchange chromatography. Ellman's reagent, 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), which binds close to the NAD(+) binding site, thus abolishing coenzyme binding in the wild-type enzyme, also reacts with D165S but has no effect on C320S. Modification by DTNB was coupled with dye-ligand affinity chromatography on a Procion Red HE-3B column in order to separate the hybrid mixture into fractions of defined composition. An optimized procedure based on salt gradient elution was developed. DTNB-modified 5 : 1 hybrids, with only one subunit capable of binding coenzyme, showed classical Michaelis-Menten kinetics when the NAD(+) concentration was varied, whereas removal of the thionitrobenzoate moieties that blocked the other five coenzyme binding sites in the hexamer reinstated nonlinear behaviour, suggesting that 'nonlinear' behaviour of the native enzyme and the hybrid with six coenzyme binding sites depends on binding to multiple sites. When assayed at high pH with increasing glutamate concentration, the sample with only one active subunit showed reduced sigmoidicity in the dependence of reaction rate on glutamate concentration (h = 3.0) compared with native C320S with six active subunits (h = 5.2) suggesting that the interaction between the subunits was reduced but not abolished completely. Catalytically silent subunits can thus still contribute to cooperativity.  相似文献   

15.
T J Bollenbach  T Nowak 《Biochemistry》2001,40(43):13097-13106
The multiligand interactions governing the allosteric response of Mg(2+)-activated yeast pyruvate kinase (YPK) during steady-state turnover were quantitated by kinetic linked-function analysis. The substrate, PEP, the enzyme-bound divalent metal, Mg(2+), and the allosteric effector, FBP, positively influence each other's interaction with the enzyme in the presence of saturating concentrations of the second substrate, MgADP. The presence of Mg(2+) enhances the interaction of PEP and of FBP with YPK by -2.0 and -1.0 kcal/mol, respectively. The simultaneous interaction of PEP, Mg(2+), and FBP with YPK is favored by -4.1 kcal/mol over the sum of their independent binding free energies. The coupling free energies measured for Mg(2+)-activated YPK are weaker than the corresponding coupling free energies measured for Mn(2+)-activated YPK [Mesecar, A., and Nowak, T. (1997) Biochemistry 36, 6792, 6803], but are consistent with results of thermodynamic measurements with the Mg(2+)-YPK complex [Bollenbach, T. J., and Nowak, T. (2001) Biochemistry 36, 13088-13096]. A comparison of ligand binding data measured by kinetic and thermodynamic linked-function analyses reveals that the MgADP complex modulates both the binding of the other three ligands and the two- and three-ligand coupling interactions between the other three ligands. Enzyme-bound Mg(2+) does not influence the homotropic cooperativity in PEP binding to YPK. It is the MgADP complex that induces homotropic cooperativity in PEP binding. It is the enzyme-bound Mn(2+) that induces homotropic binding of PEP with Mn(2+)-activated YPK. These results lend support to the hypothesis that divalent metals modulate the interactions of ligands on YPK and that divalent metals play a role in regulation of the glycolytic pathway.  相似文献   

16.
Quinlan RJ  Reinhart GD 《Biochemistry》2006,45(38):11333-11341
Differences between the crystal structures of inhibitor-bound and uninhibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphoenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits simultaneously containing two different extrinsic fluorophores in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel fluorescence correlation spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor binding because binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated.  相似文献   

17.
The role of conformational changes in the allosteric mechanism of aspartate transcarbamoylase from Escherichia coli was studied by reacting the isolated catalytic subunit with the bifunctional reagent tartryl diazide. Two derivatives differing moderately in substrate affinity were obtained depending on whether the reaction was conducted in the presence or absence of the substrate analogue succinate and carbamoyl phosphate. The modification was not accompanied by aggregation or dissociation. The modified catalytic subunits retained the ability to reassociate with unmodified regulatory subunits and produced hybrids similar in size to the native enzyme. These hybrids were appreciably sensitive to the allosteric effectors ATP and CTP but unlike native enzyme showed no cooperativity in substrate binding. The Michaelis constants of these hybrids for aspartate were intermediate between that of the isolated catalytic subunit and that of the relaxed state. Activation by ATP was caused by a reduction in Km to the value characteristic of the relaxed state whereas CTP inhibited by lowering the Vmax. The properties of the hybrids are strikingly similar to the modified enzyme obtained by Kerbiriou and Hervé from cells grown in the presence of 2-thiouracil. However, the crucial modifications are found in the regulatory subunits of the enzyme studied by these authors whereas they are located in the catalytic subunits of the hybrids reported here. Our results suggest that interactions between the catalytic and regulatory subunits have considerable effects on the state of the substrate binding sites in the native enzyme.  相似文献   

18.
Pyruvate kinase M(1), a nonallosteric isozyme, lacks heterotropic allosteric effect involving fructose-1,6-bisphosphate (FBP). To explore the molecular basis for this, a series of mutants were prepared and characterized, in which the possible candidate, Glu-432, was replaced in the rat M(1) isozyme and its allosteric mutant with the replacement of Ala-398 by Arg. Although these single mutants of Glu-432 remained nearly fully active, similar to the wild type, only the mutants with replacements by Lys and Ala were more efficiently activated by FBP when the enzymes were inhibited by L-phenylalanine. Kinetic analyses and ligand-induced fluorescence quenching studies using the allosteric double mutants indicated that the loss of a negative charge at residue 432 led to a dramatic decrease in the apparent activation constant and apparent K(d) for FBP. Furthermore, this enhancement was found to be associated with the modification of the FBP-binding site rather than the alteration of the subunit assembly. These findings suggest that Glu-432 hinders the heterotropic allosteric effect by preventing the binding of FBP through a repulsive electrostatic interaction and thereby contributes to its unique unregulated properties, independent of the shifted allosteric transition.  相似文献   

19.
The leucine residue at position 178 in the allosteric phosphofructokinase from Escherichia coli has been changed into a tryptophan residue by oligonucleotide-directed mutagenesis. The modified enzyme has been purified to homogeneity, and its enzymatic properties show that this single mutation suppresses the heterotropic interactions without affecting the homotropic ones. The mutant has the same saturation curve by fructose 6-phosphate as the wild type, showing that its active site binds this substrate with the same affinity and cooperativity. The regulatory site of the mutant enzyme can bind the effectors, the activator GDP, or the inhibitor phosphoenolpyruvate, as measured by protection against irreversible thermal denaturation. However, the binding of either effector does no longer influence the activity. This specific suppression of the coupling between the regulatory and active sites is not predicted by the concerted model which postulates that the same structural transition between two states R and T is responsible for both homotropic and heterotropic interactions. Leu-178 belongs to neither the active nor the regulatory site but appears as an important residue in the conformational change(s) involved in the regulation by allosteric effectors.  相似文献   

20.
Fenton AW  Reinhart GD 《Biochemistry》2003,42(43):12676-12681
Phosphofructokinase from Escherichia coli (EcPFK) is a homotetramer with four active sites, which bind the substrates fructose-6-phosphate (Fru-6-P) and MgATP. In the presence of low concentrations of Fru-6-P, MgATP displays substrate inhibition. Previous proposals to explain this substrate inhibition have included both kinetic and allosteric mechanisms. We have isolated hybrid tetramers containing one wild type subunit and three mutated subunits (1:3). The mutated subunits contain mutations that decrease affinity for Fru-6-P (R243E) or MgATP (F76A/R77D/R82A) allowing us to systematically simplify the possible allosteric interactions between the two substrates. In the absence of a rate equation to explain the allosteric effects in a tetramer, the data have been compared to simulated data for an allosteric dimer. Since the apparent substrate inhibition caused by MgATP binding is not seen in hybrid tetramers with only a single native MgATP binding site, the proposed kinetic mechanism is not able to explain this phenomenon. The data presented are consistent with an allosteric antagonism between MgATP in one active site and Fru-6-P in a second active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号