首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover.  相似文献   

2.
The kinetics of reduction of free flavin semiquinones of the individual components of 1:1 covalent and electrostatic complexes of yeast ferric and ferryl cytochrome c peroxidase and ferric horse cytochrome c have been studied. Covalent cross-linking between the peroxidase and cytochrome c at low ionic strength results in a complex that has kinetic properties both similar to and different from those of the electrostatic complex. Whereas the cytochrome c heme exposure to exogenous reductants is similar in both complexes, the apparent electrostatic environment near the cytochrome c heme edge is markedly different. In the electrostatic complex, a net positive charge is present, whereas in the covalent complex, an essentially neutral electrostatic charge is found. Intracomplex electron transfer within the two complexes is also different. For the covalent complex, electron transfer from ferrous cytochrome c to the ferryl peroxidase has a rate constant of 1560 s-1, which is invariant with respect to changes in the ionic strength. The rate constant for intracomplex electron transfer within the electrostatic complex is highly ionic strength dependent. At mu = 8 mM a value of 750 s-1 has been obtained [Hazzard, J. T., Poulos, T. L., & Tollin, G. (1987) Biochemistry 26, 2836-2848], whereas at mu = 30 mM the value is 3300 s-1. This ionic strength dependency for the electrostatic complex has been interpreted in terms of the rearrangement of the two proteins comprising the complex to a more favorable orientation for electron transfer. In the case of the covalent complex, such reorientation is apparently impeded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated the interaction between cytochrome c oxidase and its substrate cytochrome c by catalyzing the covalent linkage of the two proteins to yield 1 : 1 covalent enzyme-substrate complexes under conditions of low ionic strength. In addition to the 'traditional' oxidized complex formed between oxidized cytochrome c and the oxidized enzyme we prepared complexes under steady-state reducing conditions. Whereas for the 'oxidized' complex cytochrome c became bound exclusively to subunit II of the enzyme, for the 'steady-state' complex cytochrome c became bound to subunit II and two low molecular mass subunits, most likely VIb and IV. For both complexes we investigated: (a) the ability of the covalently bound cytochrome c to relay electrons into the enzyme, and (b) the ability of the covalently bound enzyme to catalyze the oxidation of unbound (exogenous) ferrocytochrome c. Steady-state spectral analysis (400-630 nm) combined with stopped-flow studies, confirmed that the bound cytochrome c mediated the efficient transfer of electrons from the reducing agent ascorbate to the enzyme. In the case of the latter, the half life for the ascorbate reduction of the bound cytochrome c and that for the subsequent transfer of electrons to haem a were both < 5 ms. In contrast the covalent complexes, when reduced, were found to be totally unreactive towards oxidized cytochrome c oxidase confirming that the previously observed reduction of haem a within the complexes occurred via intramolecular rather than intermolecular electron transfer. Additionally, stopped-flow analysis at 550 nm showed that haem a within both covalent complexes catalyzed the oxidation of exogenous ferrocytochrome c: The second order rate constant for the traditional complex was 0.55x10(6) m(-1) x s(-1) while that for the steady-state was 0.27x10(6) m(-1) x s(-1). These values were approximately 25-50% of those observed for 1 : 1 electrostatic complexes of similar concentrations. These results combined with those of the ascorbate and the electrophoresis studies suggest that electrons are able to enter cytochrome c oxidase via two independent pathways. We propose that during enzyme turnover the enzyme cycles between two conformers, one with a substrate binding site at subunit II and the other along the interface of subunits II, IV and VIb. Structural analysis suggests that Glu112, Glu113, Glu114 and Asp125 of subunit IV and Glu40, Glu54, Glu78, Asp35, Asp49, Asp73 and Asp74 of subunit VIb are residues that might possibly be involved.  相似文献   

4.
The interaction between cytochrome c and cytochrome c peroxidase was investigated using sedimentation equilibrium at pH 6,20 degrees C, in a number of buffer systems varying in ionic strength between 1 and 100 mM. Between 10 and 100 mM ionic strengths, the sedimentation of the individual proteins was essentially ideal, and sedimentation equilibrium experiments on mixtures of the two proteins were analyzed assuming ideal solution behavior. Analysis of the distribution of mixtures of cytochrome c and cytochrome c peroxidase in the ultracentrifuge cell based on a model involving the formation of a 1:1 cytochrome c-cytochrome c peroxidase complex gave values of the equilibrium dissociation constant ranging from 2.3 +/- 2.7 microM at 10 mM ionic strength to infinity (no detectable interaction) at 100 mM ionic strength. Attempts to determine the presence of complexes involving two cytochrome c molecules bound to cytochrome c peroxidase were inconclusive.  相似文献   

5.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

6.
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrate-ferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the 'association' rate but also by increasing the 'dissociation' rate for bound cytochrome c converting the 'primary' (T) site at high salt concentrations into a site similar kinetically to the 'secondary' (L) site at low ionic strength. A finite Km of 170 microM at very high ionic strength indicates a ratio of K infinity m/K 0 M of about 5000. It is proposed that anions either modify the E10 of cytochrome C bound at the primary (T) site of that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

7.
Cytochrome c peroxidase and cytochrome c form a noncovalent electron transfer complex in the course of the peroxidase-catalyzed reduction of H2O2. The two hemoproteins were cross-linked in 40% yield to a covalent 1:1 complex with the aid of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was found to be a valid model of the noncovalent electron transfer complex for the following reasons. The covalent complex had only 5% residual peroxidase activity toward exogeneous ferrocytochrome c indicating that the cross-linked cytochrome c covers the electron-accepting site of cytochrome c peroxidase. The residual peroxidase activity was almost independent of ionic strength indicating that the electron-accepting site is much less accessible even when ionic bonds between the two cross-linked hemoproteins are severed. The rate of reduction of heme c by ascorbate is 15 times slower in the covalent complex than in free cytochrome c and is independent of ionic strength. Although the covalent complex may not have been entirely pure with respect to the number and location of the cross-links, two major cross-links could be localized to within a few residues. One is from Lys 13 of cytochrome c to an acidic residue in positions 32, 33, 34, 35, or 37 of cytochrome c peroxidase, the other from Lys 86 of cytochrome c to a carboxyl group in the same cluster of acidic residues. The result stresses the importance of a peculiar stretch of acidic residues of cytochrome c peroxidase and of Lys 13 and 86 of cytochrome c.  相似文献   

8.
Cytochrome c derivatives modified with a photoactivatable arylazido group in selected lysine residues were irradiated in the presence of cytochrome c peroxidase (EC 1.11.1.5). A derivative modified at lysine 13 was able to cross-link to the enzyme and inhibit electron transfer activity. Complete inhibition of cytochrome c peroxidase activity was obtained when 1 mol of cytochrome c was covalently bound per mol of cytochrome c peroxidase. Chemical cleavage of the covalent complex has been used for a preliminary characterization of the site of cross-linking of cytochrome c to cytochrome c peroxidase. This linkage site was localized to the NH2 terminal part of cytochrome c peroxidase including residues 1-51.  相似文献   

9.
Cytochrome c (horse heart) was covalently linked to yeast cytochrome c peroxidase by using the cleavable bifunctional reagent dithiobis-succinimidyl propionate in 5 mM-sodium phosphate buffer, pH 7.0. A cross-linked complex of molecular weight 48 000 was purified in approx. 10% yield from the reaction mixture, which contained 1 mol of cytochrome c and 1 mol of cytochrome c peroxidase/mol. Of the total 40 lysine residues, four to six were blocked by the cross-linking agent. Dithiobis-succinimidylpropionate can also cross-link cytochrome c to ovalbumin, but cytochrome c peroxidase is the preferred partner for cytochrome c in a mixture of the three proteins. The cytochrome c cross-linked to the peroxidase can be rapidly reduced by free cytochrome c-557 from Crithidia oncopelti, and the equilibrium obtained can be used to calculate a mid-point oxidation-reduction potential for the cross-linked cytochrome of 243 mV. Mitochondrial NADH-cytochrome c reductase will reduce the bound cytochrome only very slowly, but the rate of reduction by ascorbate at high ionic strength approaches that for free cytochrome c. Bound cytochrome c reduced by ascorbate can be re-oxidized within 10s by the associated peroxidase in the presence of equimolar H2O2. In the standard peroxidase assay the cross-linked complex shows 40% of the activity of the free peroxidase. Thus the intrinsic ability of each partner in the complex to take part in electron transfer is retained, but the stable association of the two proteins affects access of reductants.  相似文献   

10.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

11.
Electron transfer from yeast ferrous cytochrome c to H2O2-oxidized yeast cytochrome c peroxidase has been studied using flash photoreduction methods. At low ionic strength (mu less than 10 mM), where a strong complex is formed between cytochrome c and peroxidase, electron transfer occurs rather slowly (k approximately 200s-1). However, at high ionic strength where the electrostatic complex is largely dissociated, the observed first-order rate constant for peroxidase reduction increases significantly reaching a concentration independent limit of k approximately 1500 s-1. Thus, at least in some cases, formation of an electrostatically-stabilized complex can actually impede electron transfer between proteins.  相似文献   

12.
B C Hill  C Greenwood 《FEBS letters》1984,166(2):362-366
The reaction with O2 of equimolar mixtures of cytochrome c and cytochrome c oxidase in high and low ionic strength buffers has been examined by flow-flash spectrophotometry at room temperature. In low ionic strength media where cytochrome c and the oxidase are bound in an electrostatic, 1:1 complex some of the cytochrome c is oxidised at a faster rate than a metal centre of the oxidase. In contrast, when cytochrome c and cytochrome c oxidase are predominantly dissociated at high ionic strength cytochrome c oxidation occurs only slowly (t1/2 = 5 s) following the complete oxidation of the oxidase. These results demonstrate that maximal rates of electron transfer from cytochrome c to O2 occur when both substrates are present on the enzyme. The heterogeneous oxidation of cytochrome c observed in the complex implies more than one route for electron transfer within the enzyme. Possibilities for new electron transfer pathways from cytochrome c to O2 are proposed.  相似文献   

13.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c.  相似文献   

14.
The 1:1 covalently cross-linked complex between horse cytochrome c and yeast cytochrome c peroxidase (ccp) has been formed by a slight modification of the method of Waldmeyer and Bosshard [Waldmeyer, B., & Bosshard, H. R. (1985) J. Biol. Chem. 260, 5184-5190]. This earlier study has been extended to show that efficient cross-linking of the two proteins can occur in a variety of buffers over a broad ionic strength range. The substitution of ferrocytochrome c for ferricytochrome c in the cross-linking studies resulted in an increased yield of 1:1 complex (approximately 10-20%) under the conditions studied. An improved method for purifying the covalent complex in relatively large quantities is presented here as are the results of electrophoresis and proton NMR studies of the complex. Both electrophoresis and NMR studies indicate modification of some surface acidic amino acids in the covalent complex by the carbodiimide. The proton hyperfine-shifted resonances of cytochrome c are broadened in the covalent complex relative to free cytochrome c, and the resonances corresponding to the cytochrome c heme 3-CH3 and 8-CH3 groups are shifted closer together in the complex. Integration of NMR resonances confirms a 1:1 complex as the primary cross-linking reaction product. However, we also demonstrate that the covalent complex can be further coupled to ccp and to cytochrome c to form higher molecular weight aggregates.  相似文献   

15.
Proton NMR spectroscopy at 500 and 361 MHz has been used to characterize the noncovalent or electrostatic complexes of yeast cytochrome c peroxidase (CcP) with horse, tuna, yeast isozyme-1, and yeast isozyme-2 ferricytochromes c and the covalently cross-linked complexes of cytochrome c peroxidase with horse and yeast isozyme-1 ferricytochromes c. Under the conditions employed in this work, the stoichiometry of the predominant complex formed in solution (which totaled greater than 90% of complex formed) was found to be 1:1 in all cases. These studies have elucidated significant differences in the proton NMR absorption spectra and the one-dimensional nuclear Overhauser effect difference spectra of the complexes, depending on the specific species of ferricytochrome c incorporated. In particular, the results indicate that the noncovalent complexes formed between CcP and physiological redox partners (yeast isozyme-1 or yeast isozyme-2 ferricytochromes c) are distinctly different from the noncovalent complexes formed between CcP and ferricytochromes c from horse and tuna. Parallel chemical cross-linking studies carried out using mixtures of cytochrome c peroxidase with horse ferricytochrome c, and cytochrome c peroxidase with yeast isozyme-1 ferricytochrome c further emphasize such cytochrome c-dependent differences, with only the covalently cross-linked complex of physiological redox partners (cytochrome c peroxidase/yeast isozyme-1) displaying NMR spectra characteristic of a heterogeneous mixture of different 1:1 complexes. Finally, one-dimensional nuclear Overhauser effect experiments have proven valuable in selectively and efficiently probing the protein-protein interface in these complexes, including the environment around the cytochrome c heme 3-methyl group and Phe-82.  相似文献   

16.
Kinetics measurements of the electron transfer between ferricytochrome c and liposomal ferrocytochrome c1 (with and without the hinge protein) were performed. The observed rate constants(kobs) of electron transfer between liposomal ferrocytochrome c1 and ferricytochrome c at different ionic strengths were measured in cacodylate buffer, pH 7.4, at 2 C. The effect of ionic strength on the rate constant(kobs) of electron transfer between liposomal cytochrome c1 and cytochrome c is far greater than that in the solution kinetics (Kim, C.H., Balny, C. and King, T.E. (1987) J. Biol. Chem. 262, 8103-8108). The result demonstrates that the membrane bound cytochrome c1 creates a polyelectrolytic microenvironment which appears to be involved in the control of electron transfer and can be modulated by the ionic strength. The involvement of electrostatic potentials in the electron transfer between the membrane bound cytochrome c1 and cytochrome c is discussed in accord with the experimental results and a polyelectrolyte theory.  相似文献   

17.
Cytochrome-c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) forms a noncovalent 1:1 complex with horse cytochrome c in low ionic strength solution that is detectable by proton NMR spectroscopy. When the entire proton hyperfine-shifted spectrum is considered only five hyperfine resonances exhibit unambiguously detectable shifts: the heme 8-CH3 and 3-CH3 resonances, single proton resonances near 19 ppm and -4 ppm and the methionine-80 methyl group. These shifts are very similar to those observed for the covalently crosslinked complex of cytochrome-c peroxidase and horse cytochrome c, but different from those reported for cytochrome c complexes with flavodoxin and cytochrome b5. By comparison with the shifts reported for lysine-13-modified cytochrome c we conclude that the results reported here support the Poulos-Kraut proposed structure for the molecular redox complex between cytochrome-c peroxidase and cytochrome c. These results indicate that the principal site of interaction with cytochrome-c peroxidase is the exposed heme edge of horse cytochrome c, in proximity to lysine-13 and the heme pyrrole II. The noncovalent cytochrome-c peroxidase-cytochrome c complex exists in the rapid-exchange time limit even at 500 mHz proton frequency. Our data provide an improved estimate of the minimum off-rate for exchanging cytochrome c as 1133 (+/- 120) s-1 at 23 degrees C.  相似文献   

18.
N A Schroedl  C R Hartzell 《Biochemistry》1977,16(23):4966-4971
Oxidative titrations were performed on the electrostatic complex formed between cytochrome c and cytochrome aa3 at low ionic strength. Midpoint potentials of the redox centers in the proteins in 1:1 and 2:1 complexes were compared with those in mixtures of the cytochromes at high ionic strength. Computer simulations of all titrations yielded midpoint potentials for the components of cytochrome aa3 which were consistent with literature values for isolated cytochrome aa3 or mixture of cytochromes c and aa3. However, the unequal heme extinction coefficients observed previously (Schroedl, N.A., and Hartzell, C.R. (1977), Biochemistry 16, 1327) during oxidative titrations of cytochrome aa3 became equal in magnitude under these experimental conditions. The binding of cytochrome c to cytochrome aa3 changed the midpoint potentials of cytochrome aa3 by 15-20 mV, while the midpoint potentials for cytochrome c were altered by 50-60 mV. Careful analysis of these titrations including computer simulation revealed that cytochrome c was able to bind to cytochrome aa3 only after cytochrome aL2+ had become oxidized. When bound to cytochrome aa3, the midpoint potential of cytochrome c was 210 7V. Titrations performed under a carbon monoxide atmosphere revealed cytochrome aa3 midpoint potentials unchanged from reported values. Cytochrome c again exhibited a midpoint potential of 210 mV after binding to cytochrome aa3.  相似文献   

19.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

20.
Photooxidation of Rhodobacter capsulatus cytochrome c2 and four site-directed mutants by detergent solubilized Rhodobacter sphaeroides reaction centers was studied as a function of ionic strength at pH 8.0. Mutants of cytochrome c2 included K12D (lysine 12 substituted by aspartate), K14E (lysine 14 substituted by glutamate), K32E (lysine 32 substituted by glutamate), and K14E/K32E (lysines 14 and 32 substituted by glutamates). With respect to the wild-type, the mutants exhibited decreased second-order rate constants, indicating perturbation of their electrostatic interaction with the reaction center. In the transient complex, the interaction domain charges of the reaction center and wild-type cytochrome c2 were estimated to be -4.8 and +4.8, respectively. In contrast, the interaction domain charges of mutants K12D, K14E, K32E, and K14E/K32E were estimated to be +2.8, +3.7, +3.6 and +1.3, respectively. At infinite ionic strength, the second-order rate constant of the wild-type cytochrome c2 photooxidation (k infinity) was estimated to be 8.7 x 10(6) M-1 s-1. In the case of K32E, k infinity was not changed significantly (8.2 x 10(6) m-1 s-1), suggesting that the electrostatic perturbation of this mutant was largely overcome at high ionic strength. In contrast, the k infinity for K12D, K14E, and K14E/K32E were estimated to be decreased 2-7-fold. Consequently, mutations to R. capsulatus lysines 12 and 14 appear to perturb the distance and/or orientation of the cytochrome c2 relative to the reaction center in the reactive complex, as well as alter electrostatic interactions. Based upon the kinetic results presented here, the cytochrome c2-reaction center transient complex has been modeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号