首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kleinschmidt A 《Neuron》2004,41(6):842-844
Is there a neural system dedicated to generic magnitude judgments? In this issue of Neuron, Pinel et al. report qualitative spatial overlap of fMRI responses during judgments of luminance, size, and numerical magnitude but also quantitative response differences in intraparietal cortex that mirror behavioral interference between perceptual and symbolic magnitude.  相似文献   

2.
Color signals in human motion-selective cortex   总被引:4,自引:0,他引:4  
The neural basis for the effects of color and contrast on perceived speed was examined using functional magnetic resonance imaging (fMRI). Responses to S cone (blue-yellow) and L + M cone (luminance) patterns were measured in area V1 and in the motion area MT+. The MT+ responses were quantitatively similar to perceptual speed judgments of color patterns but not to color detection measures. We also measured cortical motion responses in individuals lacking L and M cone function (S cone monochromats). The S cone monochromats have clear motion-responsive regions in the conventional MT+ position, and their contrast-response functions there have twice the responsivity of S cone contrast-response functions in normal controls. But, their responsivity is far lower than the normals' responsivity to luminance contrast. Thus, the powerful magnocellular input to MT+ is either weak or silent during photopic vision in S cone monochromats.  相似文献   

3.
Color signals in area MT of the macaque monkey   总被引:5,自引:0,他引:5  
The relationship between the neural processing of color and motion information has been a contentious issue in visual neuroscience. We examined this relationship directly by measuring neural responses to isoluminant S cone signals in extrastriate area MT of the macaque monkey. S cone stimuli produced robust, direction-selective responses at most recording sites, indicating that color signals are present in MT. While these responses were unequivocal, S cone contrast sensitivity was, on average, 1.0-1.3 log units lower than luminance contrast sensitivity. The presence of S cone responses and the relative sensitivity of MT neurons to S cone and luminance signals agree with functional magnetic resonance imaging (fMRI) measurements in human MT+. The results are consistent with the hypothesis that color signals in MT influence behavior in speed judgment tasks.  相似文献   

4.
Human functional magnetic resonance imaging (fMRI) informs the understanding of the neural basis of mental function and is a key domain of ethical enquiry. It raises questions about the practice and implications of research, and reflexively informs ethics through the empirical investigation of moral judgments. It is at the centre of debate surrounding the importance of neuroscience findings for concepts such as personhood and free will, and the extent of their practical consequences. Here, we map the landscape of fMRI and neuroethics, using citation analysis to uncover salient topics. We find that this landscape is sparsely populated: despite previous calls for debate, there are few articles that discuss both fMRI and ethical, legal, or social implications (ELSI), and even fewer direct citations between the two literatures. Recognizing that practical barriers exist to integrating ELSI discussion into the research literature, we argue nonetheless that the ethical challenges of fMRI, and controversy over its conceptual and practical implications, make this essential.  相似文献   

5.

Background

The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy trade-off (SAT) in decision-making, its neural basis is still unknown.

Methodology/Principal Findings

Using functional magnetic resonance imaging (fMRI) we show that emphasizing the speed of a perceptual decision at the expense of its accuracy lowers the amount of evidence-related activity in lateral prefrontal cortex. Moreover, this speed-accuracy difference in lateral prefrontal cortex activity correlates with the speed-accuracy difference in the decision criterion metric of signal detection theory. We also show that the same instructions increase baseline activity in a dorso-medial cortical area involved in the internal generation of actions.

Conclusions/Significance

These findings suggest that the SAT is neurally implemented by modulating not only the amount of externally-derived sensory evidence used to make a decision, but also the internal urge to make a response. We propose that these processes combine to control the temporal dynamics of the speed-accuracy trade-off in decision-making.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) studies traditionally use general linear model-based analysis (GLM-BA) and regularly report task-related activation, deactivation, or no change in activation in separate brain regions. However, several recent fMRI studies using spatial independent component analysis (sICA) find extensive overlap of functional networks (FNs), each exhibiting different task-related modulation (e.g., activation vs. deactivation), different from the dominant findings of GLM-BA. This study used sICA to assess overlap of FNs extracted from four datasets, each related to a different cognitive task. FNs extracted from each dataset overlapped with each other extensively across most or all brain regions and showed task-related concurrent increases, decreases, or no changes in activity. These findings indicate that neural substrates showing task-related concurrent but different modulations in activity intermix with each other and distribute across most of the brain. Furthermore, spatial correlation analyses found that most FNs were highly consistent in spatial patterns across different datasets. This finding indicates that these FNs probably reflect large-scale patterns of task-related brain activity. We hypothesize that FN overlaps as revealed by sICA might relate to functional heterogeneity, balanced excitation and inhibition, and population sparseness of neuron activity, three fundamental properties of the brain. These possibilities deserve further investigation.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.  相似文献   

8.
The human visual system has a remarkable ability to successfully operate under a variety of challenging viewing conditions. For example, our object-recognition capabilities are largely unaffected by low-contrast (e.g., foggy) environments. The basis for this ability appears to be reflected in the neural responses in higher cortical visual areas that have been characterized as being invariant to changes in luminance contrast: neurons in these areas respond nearly equally to low-contrast as compared to high-contrast stimuli. This response pattern is fundamentally different than that observed in earlier visual areas such as primary visual cortex (V1), which is highly dependent on contrast. How this invariance is achieved in higher visual areas is largely unknown. We hypothesized that directed spatial attention is an important prerequisite of the contrast-invariant responses in higher visual areas and tested this with functional MRI (fMRI) while subjects directed their attention either toward or away from contrast-varying shape stimuli. We found that in the lateral occipital complex (LOC), a visual area important for processing shape information, attention changes the form of the contrast response function (CRF). By directing attention away from the shape stimuli, the CRF in the LOC was similar to that measured in V1. We describe a number of mechanisms that could account for this important function of attention.  相似文献   

9.
Neurons in the primary visual cortex, V1, are specialized for the processing of elemental features of the visual stimulus, such as orientation and spatial frequency. Recent fMRI evidence suggest that V1 neurons are also recruited in visual perceptual memory; a number of studies using multi-voxel pattern analysis have successfully decoded stimulus-specific information from V1 activity patterns during the delay phase in memory tasks. However, consistent fMRI signal modulations reflecting the memory process have not yet been demonstrated. Here, we report evidence, from three subjects, that the low V1 BOLD activity during retention of low-level visual features is caused by competing interactions between neural populations coding for different values along the spectrum of the dimension remembered. We applied a memory masking paradigm in which the memory representation of a masker stimulus interferes with a delayed spatial frequency discrimination task when its frequency differs from the discriminanda with ±1 octave and found that impaired behavioral performance due to masking is reflected in weaker V1 BOLD signals. This cross-channel inhibition in V1 only occurs with retinotopic overlap between the masker and the sample stimulus of the discrimination task. The results suggest that memory for spatial frequency is a local process in the retinotopically organized visual cortex.  相似文献   

10.
Wilke M 《PloS one》2012,7(4):e35578
For functional magnetic resonance imaging (fMRI) group activation maps, so-called second-level random effect approaches are commonly used, which are intended to be generalizable to the population as a whole. However, reliability of a certain activation focus as a function of group composition or group size cannot directly be deduced from such maps. This question is of particular relevance when examining smaller groups (<20-27 subjects). The approach presented here tries to address this issue by iteratively excluding each subject from a group study and presenting the overlap of the resulting (reduced) second-level maps in a group percent overlap map. This allows to judge where activation is reliable even upon excluding one, two, or three (or more) subjects, thereby also demonstrating the inherent variability that is still present in second-level analyses. Moreover, when progressively decreasing group size, foci of activation will become smaller and/or disappear; hence, the group size at which a given activation disappears can be considered to reflect the power necessary to detect this particular activation. Systematically exploiting this effect allows to rank clusters according to their observable effect size. The approach is tested using different scenarios from a recent fMRI study (children performing a "dual-use" fMRI task, n = 39), and the implications of this approach are discussed.  相似文献   

11.
How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of judging for beauty as opposed to other judgments. Our group questioned whether this approach is sufficient. In our view, a brain region that assesses beauty should show beauty-level-dependent activation during the beauty judgment task, but not during other, unrelated tasks. We therefore performed an fMRI experiment in which subjects judged visual textures for beauty, naturalness and roughness. Our focus was on finding brain activation related to the rated beauty level of the stimuli, which would take place exclusively during the beauty judgment. An initial whole-brain analysis did not reveal such interactions, yet a number of the regions showing main effects of the judgment task or the beauty level of stimuli were selectively sensitive to beauty level during the beauty task. Of the regions that were more active during beauty judgments than roughness judgments, the frontomedian cortex and the amygdala demonstrated the hypothesized interaction effect, while the posterior cingulate cortex did not. The latter region, which only showed a task effect, may play a supporting role in beauty assessments, such as attending to one''s internal state rather than the external world. Most of the regions showing interaction effects of judgment and beauty level correspond to regions that have previously been implicated in aesthetics using different stimulus classes, but based on either task or beauty effects alone. The fact that we have now shown that task-stimulus interactions are also present during the aesthetic judgment of visual textures implies that these areas form a network that is specifically devoted to aesthetic assessment, irrespective of the stimulus type.  相似文献   

12.
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.  相似文献   

13.
Todorović D 《Spatial Vision》2006,19(2-4):219-261
The illumination interpretation approach claims that lightness illusions can be explained as misapplications of lightness constancy mechanisms, processes which usually enable veridical extraction of surface reflectance from luminance distributions by discounting illumination. In particular, luminance gradients are thought to provide cues about the interactions of light and surfaces. Several examples of strong lightness illusions are discussed for which explanations based on illumination interpretation can be proposed. In criticisms of this approach, a variety of demonstrations of similarly structured control displays are presented, which involve equivalent lightness effects that cannot readily be accounted for by illumination interpretation mechanisms. Furthermore, a number of known and novel displays are presented that demonstrate effects of gradients on the qualitative appearance of uniform regions. Finally, some simple simulations of neural effects of luminance distributions are discussed.  相似文献   

14.
Brain responses to the acquired moral status of faces   总被引:13,自引:0,他引:13  
Singer T  Kiebel SJ  Winston JS  Dolan RJ  Frith CD 《Neuron》2004,41(4):653-662
We examined whether neural responses associated with judgments of socially relevant aspects of the human face extend to stimuli that acquire their significance through learning in a meaningful interactive context, specifically reciprocal cooperation. During fMRI, subjects made gender judgments on faces of people who had been introduced as fair (cooperators) or unfair (defector) players through repeated play of a sequential Prisoner's Dilemma game. To manipulate moral responsibility, players were introduced as either intentional or nonintentional agents. Our behavioral (likebility ratings and memory performance) as well as our imaging data confirm the saliency of social fairness for human interactions. Relative to neutral faces, faces of intentional cooperators engendered increased activity in left amygdala, bilateral insula, fusiform gyrus, STS, and reward-related areas. Our data indicate that rapid learning regarding the moral status of others is expressed in altered neural activity within a system associated with social cognition.  相似文献   

15.
Distinct mechanisms mediate visual detection and identification   总被引:1,自引:0,他引:1  
A core organizing principle for studies of the brain is that distinct neural pathways mediate distinct behavioral tasks [1, 2]. When two related tasks are mediated by a common pathway, studies of one are likely to generalize to the other. Here, we test whether performance on two laboratory tasks that model object detection and identification are mediated by common mechanisms of visual adaptation. Although both tasks rely on the luminance pattern in images, their demands on visual processing are quite different. Object detection requires discriminating image luminance differences associated with the light reflected from adjacent objects. To encode these differences reliably, neurons adapt their limited dynamic range to prevailing viewing conditions [3-6]. Object identification, on the other hand, demands a fixed response to light reflected from an object independent of illumination [7]. We compared performance in discrimination and identification tasks for simulated surfaces. In striking contrast to studies with less structured contexts, we found clear evidence that distinct processes mediate judgments in the two tasks. These results challenge models that account for perceived lightness entirely through the action of image-encoding mechanisms.  相似文献   

16.
Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.  相似文献   

17.
Tilt aftereffects were generated by bilaterally symmetrical dot patterns. Both expansion and contraction effects, similar in size and magnitude to effects usually reported with luminance contours, were observed after adaptation to symmetrical patterns tilted 15 deg or 75 deg respectively from a vertically oriented test. Large effects were found when both adapting and test stimuli were symmetrical patterns while smaller effects were found when the adapting stimulus was symmetrical and test stimulus was a grating. A third experiment, which manipulated the number of dots near the axis line, confirmed the above findings; expansion and contraction effects were observed again. The results of these experiments suggest that the neural mechanism underlying the perception of luminance contours may be linked to the mechanism for the detection of symmetry.  相似文献   

18.
The survival of many animals hinges upon their ability to avoid collisions with other animals or objects, or to precisely control the timing of collisions. Optical expansion provides a compelling impression of object approach and in principle can provide the basis for judgments of time to collision (TTC) [1]. It has been demonstrated that pigeons [2] and houseflies [3] have neural systems that can initiate rapid coordinated actions on the basis of optical expansion. In the case of humans, the linkage between judgments of TTC and coordinated action has not been established at a cortical level. Using functional magnetic resonance imaging (fMRI), we identified superior-parietal and motor-cortex areas that are selectively active during perceptual TTC judgments, some of which are normally involved in producing reach-to-grasp responses. These activations could not be attributed to actual movement of participants. We demonstrate that networks involved in the computational problem of extracting TTC from expansion information have close correspondence with the sensorimotor systems that would be involved in preparing a timed motor response, such as catching a ball or avoiding collision.  相似文献   

19.
We extend a neural network model, developed to examine neural correlates for the dynamic synthesis of edges from luminance gradients (O?men, 1993), to account for the effects of exposure duration, base blur and contrast on the perceived sharpness of edges. This model of REtino-COrtical Dynamics (RECOD) predicts that (i) a decrease in exposure duration causes an increase in the perceived blur and the blur discrimination threshold for edges, (ii) this increase in perceived blur is more pronounced for sharper edges than for blurred edges, (iii) perceived blur is independent of contrast while the blur discrimination threshold decreases with contrast, (iv) perceived blur increases with increasing base blur while the blur discrimination threshold has a nonmonotonic U-shaped dependence on base blur, (v) the perceived location of an edge shifts progressively towards the low-luminance side of the edge with increasing contrast, and (vi) perceived contrast of suprathreshold stimuli is essentially independent of spatial frequency over a wide range of contrast values. These predictions are shown to be in quantitative agreement with existing psychophysical data from the literature and with data collected on three observers to quantify the effect of exposure duration on perceived blur.  相似文献   

20.
We recorded visual evoked potentials (VEPs) to checkerboard pattern-reversal stimulation in 109 normal subjects (51 males and 59 females; aged 19–84 years) in order to study the aging effect on the multiple channels of the visual system in humans. Transient VEPs to 3 check sizes (15′, 30′ and 50′) were obtained by monocular stimulation. Two test conditions were employed: (1) a high luminance (180 cd/m2) and a low luminance (11 cd/m2) both with a fixed contrast (90%), and (2) a high contrast (85%) and a low contrast (10%) both at a fixed luminance (57 cd/m2). The major features of our results included: (1) the presence of a curvilinear relationship between P100 latency and age for all conditions, while the P100 amplitude did not show any such aging effect, (2) the age-latency function was similar between the two luminance conditions, while it was different between the two contrast conditions, and (3) the differential age effect on the P100 latency caused by changes in contrast depended on the check size. These results suggest that age-related changes in the human visual system are not uniform, but rather are different in the specific functional subdivisions. It is thus hypothesized that aging may differentially influence the separate channels of the human visual system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号