首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A computer model (COREEF) designed to simulate the growth of Caribbean coral reefs has been tested for its ability to reconstruct the storm-induced and the established zonation patterns on the West Reef at Discovery Bay, Jamaica. Hindcast waves for nine positions of Hurricane Allen were routed across the reef, and the disruptions to the coralgal and sediment zones were calculated for each position. The predicted maximum and intermediate stage damages closely matched the actual destruction produced by this and other smaller storms. Despite their severity, hurricanes probably have minimal long-term effect on the established zonation of this reef, because their return period is generally less than the recovery period of the reef. Additional simulation experiments indicate that a composite of the wave conditions at Discovery Bay maintain the established reef zonation and that winter storm conditions produce the maximum bottom velocities that the coralgal framework can withstand without disruption.  相似文献   

2.
Wave stress and coral community structure in Hawaii   总被引:3,自引:0,他引:3  
Summary The most significant factor determining the structure of Hawaiian reef coral communities is physical disturbance from waves. Sequential analysis of community structure off the west coast of the island of Hawaii shows that variation of wave energy and storm frequency clearly affects organization in time and space. Normal conditions of low wave stress maintain four well-defined reef zones; diversity is highest at intermediate depths and decreases in physically rigorous shallow areas and stable deep reef slopes. Intermediate level storm wave events cause variable effects within the reef zones, but the zonation pattern, as a whole, is maintained. Diversity increases in zones that are dominated by a single species largely through nonlethal fragmentation and transport, but decreases in the zone of most equitable species distribution. Conversely, severe infrequent storm disturbances that cause massive mortality to all coral species wipe out the pattern of community structure and return the entire community to a low diversity early successional stage.Hawaii Institute of Marine Biology Contribution No.616  相似文献   

3.
Mass-transfer rates between water and benthos are derived based on the dissipation of energy by the benthic communities of coral reefs. Roughness of the benthic communities causes currents and waves to dissipate energy on reef flats at rates which far exceed ocean values of energy dissipation. The derivation here shows that first-order rate constants for nutrient uptake are (1) proportional to energy dissipation to the 0.25 root, (2) proportional to the bottom shear stress to the 0.4 root, and (3) proportional to current speed to the 0.75 root (decreasing to the 0.4 root under extreme wave activity). The shear stress, thus nutrient uptake, is positively correlated to the large-scale roughness, and to excess wave height (above the breaking height) of incoming waves. These causal relationships between nutrient-uptake rates and dissipation of energy support the general observations of reef zonation and reef metabolic rates, and are the paramount reason that coral reefs can maintain high productivity in low-nutrient tropical waters.  相似文献   

4.
The coral reefs of the Gulf of Aqaba are among the most northern ones of the world. This study, the first concerning the east coast of this topographically and hydrographically peculiar sea, considers relationships of biophysiographical and structural reef zones to fundamental abiotic environmental factors. An introduction to paleogeography, geology, petrography, topography, climate and hydrography is followed by terminological definitions used to describe the different reef areas. The investigations were carried out on two transects crossing fringing reefs of different shape. Each transect was 20 m wide and run from the shore over nearly 200 m to the fore reef in about 30 m depth. One reef, a “coastal-fringing reef”, represents an unaltered straight reef flat from shore to the reef edge 60 m away; two large pinnacles reach the surface some 125 m off the shore. The other reef, a “lagoon-fringing reef”, is divided into a 100 m wide lagoon of 0.5–2.3 m depth and a reef crest separated from the former by a rear reef. The reef platform of the lagoon-fringing reef is cut by a system of channels and tunnels; the reef edge is about 135 m off shore. Such water depth, substrate, temperature, illumination and water movement were recorded, about 200 common or dominant species (plants and animals) were collected, their distribution plotted and, together with other data and structural items, charted. Indicator species characterize the biophysiographical zones. Their variation as well as that of the structural and substrate zones depend on different zones of water movement. This basic factor also controls other ecological parameters such as food and oxygen supply as well as temperature and salinity gradients between fore reef and shore. From this point of view the ecological requirements of some indicator and other species and conversely the ecological settings of different reef areas are discussed. The different shapes of both reefs are explained on the basis of a “reef development cycle” — a hypothesis applicable to fringing reefs at unchanging sea level and based on the fact that only a small surf-influenced area of “living reef” is able to compensate for reef destruction: While a young coastal fringing reef is growing outwards, its back reef is gradually altered to a reef lagoon by erosion. After stillstand of seaward expansion the reef crest, too, is cut by a channel system eroded by rip currents. This stage is represented by the lagoon-fringing reef. Isolated pinnacles remain as remnants of the former reef crest; young coastal-fringing reefs develop from the shore. This stage is examplified by the first reef studied. Extension, growth intensity, dominant frame building corals, and the number of species of the Aqaba reefs are compared with those of Eilat and with reefs of the middle Red Sea, South India, Southwest-Pacific and Jamaica.  相似文献   

5.
Coral reefs exhibit marked zonation patterns within single reefs and across continental shelves. For sessile organisms these zones are often related to wave exposure. We examined the extent to which wave exposure may shape the distribution patterns of fishes. We documented the distribution of 98 species of wrasses and parrotfishes at 33 sites across the Great Barrier Reef. The greatest difference between labrid assemblages was at the habitat level, with exposed reef flats and crests on mid- and outer reefs possessing a distinct faunal assemblage. These exposed sites were dominated by individuals with high pectoral fin aspect ratios, i.e. fishes believed to be capable of lift-based swimming which often achieve high speeds. Overall, there was a strong correlation between estimated swimming performance, as indicated by fin aspect ratio, and degree of water movement. We propose that swimming performance in fishes limits access to high-energy locations and may be a significant factor influencing habitat use and regional biogeography of reef fishes.  相似文献   

6.
The physical structure of coral reefs plays a critical role as a barrier to storm waves and tsunamis and as a habitat for living reef-building and reef-associated organisms. However, the mechanical properties of reef substrate (i.e. the non-living benthos) are largely unknown, despite the fact that substrate properties may ultimately determine where organisms can persist. We used a geo-mechanical technique to measure substrate material density and strength over a reef hydrodynamic gradient. Contrary to expectation, we found a weak relationship between substrate strength and wave-induced water flow: flow rates decline sharply at the reef crest, whereas substrate properties are relatively constant over much of the reef before declining by almost an order of magnitude at the reef back. These gradients generate a novel hump-shaped pattern in resistance to mechanical disturbances for live corals, where colonies closer to the back reef are prone to dislodgement because of poorly cemented substrate. Our results help explain an intermediate zone of higher taxonomic and morphological diversity bounded by lower diversity exposed reef crest and unstable reef back zones.  相似文献   

7.
The condition of coral reefs in the Cuban Archipelago is poorly known. We aimed to analyse coral assemblages across 199 reef sites belonging to 12 localities. Crest and fore reefs were assessed using six metrics: species richness, density, coral cover, mortality, coral size and reef complexity. The condition of reefs varied across the archipelago from healthy to depleted reefs. The localities with best scores were Cienfuegos, Bahía de Cochinos and Cazones. These reefs have values of living coral cover (>20%) and complexity (>50?cm) similar to the best preserved Caribbean reefs. However, the majority of crest biotopes suffered important deterioration with old mortality of Acropora palmata populations and moderate coral cover (15%); although crest reefs still maintained their structural complexity. Despite moderate levels of coral cover in fore reefs (18%), their condition was alarming because 25% of the sites had cover below the recovery threshold of 10%, accumulated mortality and structural flattening. Compared with the 1980s, the species richness was roughly the same (42) for crest and fore reefs, although dominance has changed to widespread tolerant species. Coral reef assemblages varied at local and regional scales in similar magnitude, suggesting the combined effects of natural and anthropogenic drivers.  相似文献   

8.
Wave measurements at Margarita Reef in southwestern Puerto Rico show that wave height decreases as waves travel across the forereef and into the backreef. Wave spectra reveal the presence of two wave trains impinging on the reef during the study: trade-wind waves and locally generated seas. Significant wave height calculated from the spectra show an average reduction of 19.5% from 20- to 10-m isobaths and 26% from 20- to 5-m isobaths. The significant wave height decreases an average of 82% for waves traveling across the reef crest and into the backreef. Wave-energy reduction is 35% from 20- to 10-m isobaths and 45% from 20- to 5-m isobaths. Energy loss across the reef crest is 97% which translates into the formation of strong across-the-reef currents capable of moving coarse sediment. Refraction diagrams of waves impinging on the reef from the SE provide a display of wave energy distribution around the reef. The transmission coefficients calculated for trade-wind waves and locally generated seas have means of 18% and 39%, respectively. A wave height model with negligible energy dissipation, produces wave height estimates that are, in general, within the ±15% error bands. Results of wave-energy changes from this study were applied to waves representative of hurricane conditions at the reef. Aerial photographs of the reef before and after the passage of hurricanes were compared to assess the reef changes. Changes observed in the photographs are interpreted as products of sediment transport by hurricane-generated waves. The patterns of change agree with the refraction diagrams suggesting that waves were the main agents of change at margarita Reef during severe storms. Correspondence to: A. Lugo-Fernández}  相似文献   

9.

Spur-and-groove (SAG) morphology characterizes the fore reef of many coral reefs worldwide. Although the existence and geometrical properties of SAG have been well documented, an understanding of the hydrodynamics over them is limited. Here, the three-dimensional flow patterns over SAG formations, and a sensitivity of those patterns to waves, currents, and SAG geometry were characterized using the physics-based Delft3D-FLOW and SWAN models. Shore-normal shoaling waves over SAG formations were shown to drive two circulation cells: a cell on the lower fore reef with offshore flow over the spurs and onshore flow over the grooves, except near the seabed where velocities were always onshore, and a cell on the upper fore reef with offshore surface velocities and onshore bottom currents, which result in depth-averaged onshore and offshore flow over the spurs and grooves, respectively. The mechanism driving this flow results from the net of the radiation stress gradients and pressure gradient, which is balanced by the Reynolds stress gradients and bottom friction that differ over the spur and over the groove. Waves were the primary driver of variations in modelled flow over SAG, with the flow strength increasing for increasing wave heights and periods. Spur height, SAG wavelength, and the water depth at peak spur height were the dominant influences on the hydrodynamics, with spur heights directly proportional to the strength of SAG circulation cells. SAG formations with shorter SAG wavelengths only presented one circulation cell on the shallower portion of the reef, as opposed to the two circulation cells for longer SAG wavelengths. SAG formations with peak spur heights occurring in shallower water had stronger circulation than those with peak spur heights occurring in deeper water. These hydrodynamic patterns also likely affect coral and reef development through sediment and nutrient fluxes.

  相似文献   

10.
This study aimed to investigate the spatial structure of nocturnal fish communities at settlement on coral reefs in Moorea Island lagoon, French Polynesia; and the temporal consistency of habitat selection between winter (April to June 2001) and summer (November 2001). The Moorea lagoon was divided into 12 habitat zones (i.e., coral reef zones), which were distinct in terms of depth, wave exposure, and substratum composition. Nocturnal visual censuses among the 12 habitats found that the recently settled juveniles of 25 species recorded were dispatched among three communities spatially distributed according to the distance from the reef crest (reef crest, barrier reef, and fringing reef communities). This spatial communities structure of nocturnal juveniles was consistent in both winter and summer and would be explained primarily by a current gradient in Moorea lagoon (current speed was high near the reef crest and decreased towards the beach) and by the topographic characteristics of reef zones. Among the 25 species, 13 were recorded in both winter and summer. A comparison of the spatial distribution between summer and winter for 13 species that occurred during both seasons found that only 4 differed between the two seasons. For these species, habitat selection would be organized primarily by some stochastic processes such as inter- and intraspecific competition, predation, and food availability. Overall, the present study allowed us to highlight that most nocturnal coral reef fish juveniles at Moorea Island exhibited striking patterns in their distribution and current and topographic characteristics of reef zones might exert considerable influence on the distribution of fishes.  相似文献   

11.
The concept of ecological succession has been frequently applied in the study of ancient reefs. Whereas Paleozoic and Mesozoic reefs are commonly thought to reveal an autogenic primary—climax zonation, patterns in Neogene and Quaternary reefs are much more diverse. Here, we describe a well-preserved late Pleistocene coral reef from Dahab on Sinai Peninsula (Egypt), which shows a distinct zonation that resembles an ecological succession. In contrast to classical examples of ecological successions, species composition, paleoenvironmental conditions, and coral biodiversity of the Dahab reef indicate an allogenic, sea-level controlled community change, from marginal marine to reef slope and back reef. A review of the literature confirms that autogenic, short-term successions are virtually absent in Quaternary reefs. We predict that long generation times of corals make it unlikely that classical autogenic successions develop in reefs at all, unless environmental conditions are unusually stable.  相似文献   

12.
Damselfishes are an important element of the fauna of coral reefs. This study describes spatial patterns in the distribution of 15 species of damselfishes at Lizard Island, northern Great Barrier Reef (GBR). The aim of the work was to identify the spatial scales at which major changes in the composition and abundance of the fauna occurred. These patterns were then compared with previous studies in an attempt to determine if distributions followed general patterns at a range of localities. The assemblage found at Lizard Island was similar to that of reefs in the central GBR. The most important changes in the composition of the fauna occurred among reef zones. Shallow zones (the reef flat and crest) were dominated by herbivorous species while planktivorous and omnivorous species were most abundant in deeper zones (the reef slope). Densities of herbivorous damselfishes in shallow reef zones at Lizard Island averaged 45.5 individuals per 80 m2, a value comparable to densities found in similar zones on reefs in the central and southern GBR and at one locality in the Caribbean. Comparisons of relative distributions suggested that abundant species tend to be widely distributed among zones and habitats, while rare species have restricted distributions at Lizard Island. However, computer simulation of the sampling program suggested that the ability of our study to describe the distribution patterns of rare species was limited, despite intensive sampling. Correlations between breadth of distribution and abundance may have occurred simply because rare species were less likely to be recorded within a transect. Our results suggest that it will be difficult to compare the distribution patterns of species among studies. Furthermore, the interpretation of relative patterns of distribution at a single locality in terms of ecological specialization or partitioning may first require an assessment of the ability of the sampling program to accurately record spatial patterns.  相似文献   

13.
Stemann, T. A. & Johnson, K. G. 1992 07 15: Coral assemblages, biofacies. and ecological zones in the mid-Holocene reef deposits of the Enriquillo Valley, Dominican Republic. A large, subaerially exposed mid-Holocene reef in the Enriquillo Valley (southwest Dominican Republic) provides an excellent opportunity to examine the relationship between reefal ecology and reefal deposits. Coral species richness and diversity in the Enriquillo reef are comparable to that found in the recent of the Caribbean, and ecological zonation comprised of a shallow-water branching coral zone and a deeper water mixed-coral zone is apparent. Similar zonation and diversity patterns have been recognized on living Caribbcan reefs with moderate wave exposure. Three statistically discrete biopdcies can be discriminated in the Enriquillo deposits using quadrat point-counting techniques commonly used to census modern reefs. They include a facies dominated by Acropora cervicornis, a low diversity assemblage with abundant, large colonies of Siderastrea siderea and Stephanocoenia intersepta, and a higher diversity assembbdge composed of various taxa including Montastraea spp., Colpophyllia spp., and Agaricia spp. Each facies can be recognized at scales of 1–3 m2, though in some cases they extend for more than 20 m2. In general, the A. cervicornis facies is spatially segregated from the other two biofacies. although neither the shallow nor the deep-water ecological zone is comprised of a single reef biofacies. Rather, the biofacies described here appear to represent distinct micro-environments resulting from ecological variation at a subzonal scale. Micro-environments of similar scale are most likely preserved in other reef deposits. Recognition of these subzonal biofacies may have important consequences for the stratigraphical and paleoccological interpretation of fossil reefs. Corals, biofacies, reef zonation, coral communities, fossil reefs.  相似文献   

14.
Recorded wave data from four wave measuring instruments located at various points within a section of the Great Barrier Reef during the passage of a tropical cyclone are presented. A spectral wave prediction model is used as an aid to the interpretation of the data. The tropical cyclone generated significant wave heights of approximately 10 m seaward of the reef complex. The many scattered reefs, however, act to reduce this value to approximately 6 m landward of the reef complex. Individual reefs appear to act as complete barriers to waves at typical oceanic periods, even at high tide. In a scattered reef complex such as the Great Barrier Reff, wave energy can penetrate the inter-reef gaps. Although such inter-reef gaps may appear large in comparison to the sizes of individual reefs, wave attenuation is still significant.  相似文献   

15.
The settlement process of coral larvae following simultaneous mass-spawning remains poorly understood, particularly in terms of population and community parameters. Here, the larval settlement patterns of Acropora corals, which are the most diverse genera of scleractinian corals at the species (haplotype) level, were investigated within a single subtropical reef. Across a 4-year period (2007–2010), the mitochondrial and nuclear molecular markers of 1,073 larval settlers were analyzed. Of the 11 dominant haplotypes of recruited populations, nine exhibited non-random patterns of settlement distribution. This result suggests that the actual habitat segregation starts during the early swimming larval stages of their life history, rather than by natural selection after random settlement. In addition, the presence of a depth-related settlement pattern supports that species-specific vertical zonation of coral larvae may play a role in the establishment of habitat segregation. Moreover, in some species that showed a preference toward the shoreward area of the bay, the settlement pattern was consistent with that of the adult distribution. This result indicates that the gametes were not mixed between fore and back reefs in the period from fertilization to settlement during the mass-spawning event, even within a single small reef. Another compatible hypothesis of this pattern is that the larvae are able to recognize various types of environmental information, facilitating the selection of optimal micro-habitats. Overall, Acropora coral larvae that are produced from a simultaneous mass-spawning event may have adapted to complex reef topography by means of multi-step habitat selection at settlement, corresponding to different spatial scales.  相似文献   

16.
Sediments are a ubiquitous feature of all coral reefs, yet our understanding of how they affect complex ecological processes on coral reefs is limited. Sediment in algal turfs has been shown to suppress herbivory by coral reef fishes on high-sediment, low-herbivory reef flats. Here, we investigate the role of sediment in suppressing herbivory across a depth gradient (reef base, crest and flat) by observing fish feeding following benthic sediment reductions. We found that sediment suppresses herbivory across all reef zones. Even slight reductions on the reef crest, which has 35 times less sediment than the reef flat, resulted in over 1800 more herbivore bites (h−1 m−2). The Acanthuridae (surgeonfishes) were responsible for over 80 per cent of all bites observed, and on the reef crest and flat took over 1500 more bites (h−1 m−2) when sediment load was reduced. These findings highlight the role of natural sediment loads in shaping coral reef herbivory and suggest that changes in benthic sediment loads could directly impair reef resilience.  相似文献   

17.
 Detailed measurements of water levels, and tide and wave-induced currents were undertaken to examine physical processes and their relationship with morphology in the Cocos (Keeling) Islands, a medium sized atoll in the Indian Ocean. Results indicate that the atoll structure controls both lagoon circulation and the spatial pattern of energy distribution. Lagoon circulation is tide dominated (currents 16–31 cms-1) with flushing (2–5 days) of the lagoon occurring through the deep leeward passages. Wave- and tide-driven unidirectional flows through shallow passages (26–65 cms-1) are important mechanisms of ocean to lagoon water exchange and contribute up to 24% of the lagoon neap tide prism. Reef flats are dominated by wave energy (maximum velocity 140 cms-1, east) with measurements of the attenuation of wave energy between reef flats and shallow lagoon (80–90%) conforming to measurements from fringing and barrier reefs. Spectral analysis shows that the characteristics of wave energy vary on different sectors of the atoll, with gravity wave energy dominating the east, and infragravity wave energy dominating the southern reef flat and passages. Wave setup at the reef crest is considered to be responsible for an identified 0.1 m higher water level in the southern as opposed to eastern and northern atoll, which promotes higher reef flat growth. Transmission of gravity waves across reef flats requires threshold water depths of 0.65 (east) and 0.70 m (south). The higher southern reef is an effective filter of gravity wave energy for most tidal elevations. Differences in the type and magnitude of physical processes within the atoll are discussed with relation to geomorphic development on Cocos. Accepted: 28 February 1998  相似文献   

18.
 Coralline-algal frameworks from Atol das Rocas reefs were sampled along windward and leeward transects, and multivariate statistical analysis was used to investigate the composition and community structure of the encrusting community. The following components of the reefs were identified in slabbed and polished reef blocks sampled along each transect: encrusting coralline algae dominated by Porolithon cf. pachydermum, vermetid gastropods, Homotrema rubrum, acervulinid foraminiferans, molluscs, corals, polychaete tubes, clionid sponge borings, polychaete/sipunculid borings, cemented sediments, and growth cavities. Q-mode cluster analysis correctly classified 78% of all windward samples and 69% of all leeward samples, and R-mode separated reef components adapted to high wave energy environments from those adapted to low wave energy. Separate classification and ordination of samples from each transect indicate that seriation breakdown occurs in the windward reef between 25 and 45 m from the reef front. In the leeward reef between 75 and 90 m from the leeward reef front, seriation breakdown was not found to be significant. These results confirm that seriation (zonation) is best developed in the windward reef, as has been documented in coral-dominated reefs. Accepted: 28 February 2000  相似文献   

19.
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future.  相似文献   

20.
Feeding ecology of three life phases of the parrotfish Scarus ferrugineus was studied on a southern Red Sea fringing reef by comparing availability and consumption of benthic algae during the monsoon hot and cool seasons. Dominant biota covering dead carbonate substrates were in decreasing order of importance: turfs on endoliths, turfs on crustose corallines, and crustose corallines. On the reef crest and shallow fore reef, composition of the biota changed seasonally. Cover of turfs on endoliths and turfs on crustose corallines was higher during the hot season, while crustose corallines and macroalgae (only on reef crest) increased during the cool season. Biota in the deep fore reef did not show seasonal variation. All life phases used similar resources and showed selective feeding in all zones. Turfs on endoliths, followed by turfs on crustose corallines, was the primary feeding substrate. These two sources represented over 92% of bites during both seasons. Crustose corallines, macroalgae, and living corals were negligible components being strongly avoided at all zones and seasons. Resource use varied seasonally on the reef crest and shallow fore reef, while it remained unchanged on the deep fore reef. Turfs on endoliths were consistently preferred in both seasons but their contribution increased from 45% in the cool to 70% of bites in the hot season. Electivity for turfs on crustose corallines shifted from random feeding in the hot (27% of bites) to selection in the cool season (47% of bites). Feeding pattern changed diurnally with more bites taken from crustose corallines and turfs on crustose corallines during morning. During the rest of the day, bites from turfs on endoliths predominate. S. ferrugineus shows limited capacity to exploit seasonal increases in the biomass of foliose and canopy forming macroalgae, despite indications of energetic limitation during the cool season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号