首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Cell regulation by sphingosine and more complex sphingolipids   总被引:7,自引:0,他引:7  
Sphingolipids have the potential to regulate cell behavior at essentially all levels of signal transduction. They serve as cell surface receptors for cytoskeletal proteins, immunoglobulins, and some bacteria; as modifiers of the properties of cell receptors for growth factors (and perhaps other agents); and as activators and inhibitors of protein kinases, ion transporters, and other proteins. Furthermore, the biological activity of these compounds resides not only in the more complex species (e.g., sphingomyelin, cerebrosides, gangliosides, and sulfatides), but also in their turnover products, such as the sphingosine backbone which inhibits protein kinase C and activates the EGF-receptor kinase,inter alia. Since sphingolipids change with cell growth, differentiation, and neoplastic transformation, they could be vital participants in the regulation of these processes.This review is dedicated to Professor Herbert E. Carter on the occasion of his 80th birthday.  相似文献   

2.
Tumour necrosis factor (TNF) family ligands and their corresponding receptors play important roles in the immune system and are involved in immune regulation such as lymphoid development, cell proliferation, differentiation, activation and death. Antibodies against these ligands and receptors together with Fc-fusion proteins, have been particularly useful as immunological tools in addressing the underlying involvement of these proteins in these contexts and furthermore, have given us hope in using them as potential therapeutic agents. Over last few years, there have been many additions to these ever-growing TNF family ligands and their receptors. Here, we have generated and characterised a set of monoclonal antibodies, together with mAbs from the HLDA workshop, against DcR1, DcR2, DR4, DR5, TRAIL, APRIL, BAFF, BAFF-R, BCMA, and TACI, which may be useful in phenotypic and functional studies of the role of TNF and TNF receptor family in immune function and regulation in relation to health and disease.  相似文献   

3.
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.  相似文献   

4.
Cannabinoid receptors (CB1 and CB2) and their endogenous ligands (endocannabinoids) have recently emerged as novel mediators of liver diseases. Endogenous activation of CB1 receptors promotes nonalcoholic fatty liver disease (NAFLD) and progression of liver fibrosis associated with chronic liver injury; in addition, CB1 receptors contribute to the pathogenesis of portal hypertension and cirrhotic cardiomyopathy. CB2 receptor-dependent effects are also increasingly characterized, including antifibrogenic effects and regulation of liver inflammation during ischemia-reperfusion and NAFLD. It is likely that the next few years will allow us to delineate whether molecules targeting CB1 and CB2 receptors are useful therapeutic agents for the treatment of chronic liver diseases.  相似文献   

5.
The goals of chemoprevention of cancer are to inhibit the initiation or suppress the promotion and progression of preneoplastic lesions to invasive cancer through the use specific natural or synthetic agents. Therefore, a more desirable and aggressive approach is to eliminate aberrant clones by inducing apoptosis rather than merely slowing down their proliferation. The increased understanding of apoptosis pathways has directed attention to components of these pathways as potential targets not only for chemotherapeutic but also for chemopreventive agents. Activation of death receptors triggers an extrinsic apoptotic pathway, which plays a critical role in tumor immunosurveillance. An increasing number of previously identified chemopreventive agents were found to induce apoptosis in a variety of premalignant and malignant cell types in vitro and in a few animal models in vivo. Some chemopreventive agents such as non-steroidal anti-inflammatory drugs, tritepenoids, and retinoids increase the expression of death receptors. Thus, understanding the modulation of death receptors by chemopreventive agents and their implications in chemoprevention may provide a rational approach for using such agents alone or in combination with other agents to enhance death receptor-mediated apoptosis as a strategy for effective chemoprevention of cancer.  相似文献   

6.
Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.  相似文献   

7.
本文回顾了Th细胞亚群的功能、交互调节、影响其分化的因素以及Th细胞亚群在自身免疫病发病中的可能作用;概括了通过调节Th细胞亚群来治疗自身免疫病的方法,包括:上调CD1d治疗、给予相关细胞因子治疗、佐剂治疗、用抗细胞因子、细胞因子受体、CD40配体和B7分子的单克隆抗体治疗以及CTLA和CTLAIg治疗。这些方法为自身免疫病的治疗提供了新的思路。  相似文献   

8.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

9.
To test the hypothesis that agents activating receptors negatively coupled to adenylyl cyclase (AC) can stimulate cell proliferation, we have expressed a human alpha 2-adrenergic receptor (alpha 2-C10) in CCL39 cells and studied the effects of alpha 2-agonists on reinitiation of DNA synthesis in quiescent cells. We report that the alpha 2-agonists epinephrine and clonidine stimulate [3H]-thymidine incorporation in synergy with fibroblast growth factor and that the alpha 2-antagonist yohimbine efficiently inhibits this response. Epinephrine- and clonidine-stimulated DNA synthesis is completely blocked by pertussis toxin and correlates well with the inhibition of prostaglandin E1-stimulated AC. Thus, their action closely resembles the action of serotonin in the same cell system, which is mediated through 5-HT1b receptors. In fact, serotonin- and epinephrine-stimulated DNA synthesis reinitiation is not additive, suggesting that both agents act through a common pathway. Interestingly, alpha 2-agonists also induced a moderate release of inositol phosphates, indicating that alpha 2-adrenergic receptors can interact both with the AC and phospholipase C messenger system. Activation of phosphoinositide (PI) turnover by epinephrine leads to a significant stimulation of Na+/H+ exchange but is insufficient to trigger a mitogenic response in CCL39 cells, as will be discussed. We found no evidence for epinephrine-induced activation of Na+/H+ exchange by a mechanism independent of PI breakdown.Our data show that alpha 2-adrenergic receptors can play a role in the regulation of cell proliferation in an appropriate context; also, the data support the hypothesis that receptors negatively coupled to AC must be taken into account as mediators of growth factor action in fibroblasts, in particular when activated in parallel with receptor tyrosine kinases.  相似文献   

10.
The molecular basis of sex steroid hormone-modulation of catecholamine-regulated smooth muscle cell contraction in the uterus was investigated at the level of the catecholamine receptor in rat myometrium. Myometrial membrane binding sites for 3H)-dihydroergocryptine bound α-but not β-adrenergic antagonists and stereospecifically bound the α-agonists (?)-norepinephrine > (?)-epinephrine > phenylephrine. Binding sites for (?) (3H)-dihydroalprenolol were specific for β-adrenergic antagonists and stereospecifically bound (?)-isoproterenol > epinephrine ? norepinephrine. These results were consistent with the expected properties of the myometrial α- and β-adrenergic catecholamine receptors. Myometrial content of β- but not α-adrenergic catecholamine receptors was significantly elevated during proestrus and estrus, suggesting a role for sex steroid hormones in the regulation of these receptors. This posibility was substantiated in ovariectomized rats where castration resulted in a reduction in myometrial β-receptor content which was restored in a dose-dependent manner by estrodiol administration. We conclude: 1) rat uterus contains a substantial concentration of α- and β-adrenergic catecholamine receptors, 2) sex steroid hormones may modulated uterine contractility by regulation of these cell surface receptors; 3) modulation of cell responses to surface active hormones and agents by regulation of their cell surface receptors may be a major way in which sex steroids regulate target organ function.  相似文献   

11.
Development of natural killer cells from hematopoietic stem cells   总被引:1,自引:0,他引:1  
  相似文献   

12.
Sphingosine-1-phosphate (S1P) is a lipid mediator involved in diverse biological processes, from vascular and neural development to the regulation of lymphocyte trafficking. Many of its functions are regulated by five widely expressed S1P G-protein-coupled receptors (S1P(1-5)). S1P is produced mostly intracellularly, thus, much of its potential as an autocrine and paracrine mediator depends on how, when, and where it is generated or secreted out of the cells. However, S1P can also have intracellular activity independent of its receptors, adding to the complexity of S1P function. The mast cell, a major effector cell during an allergic response, has proven instrumental towards understanding the complex regulation and function of S1P. Antigen (Ag) engagement of the IgE receptor in mast cells stimulates sphingosine kinases, which generate S1P and are involved in the activation of calcium fluxes critical for mast cell responses. In addition, mast cells secrete considerable amounts of S1P upon activation, thus affecting the surrounding tissues and recruiting inflammatory cells. Export of S1P is also involved in the autocrine transactivation of S1P receptors present in mast cells. The in vivo response of mast cells, however, is not strictly dependent on their ability to generate S1P, but they are also affected by changes in S1P in the environment previous to Ag challenge. This review will discuss the recent advances towards understanding the intricacies of S1P generation, secretion and regulation in mast cells. In addition, how S1P receptors are activated and their involvement in mast cell functions will also be covered, including new insights on the role of S1P in the mast cell-mediated allergic response of systemic anaphylaxis.  相似文献   

13.
14.
生长因子是一类与受体结合后可以促进细胞增殖和调节细胞多项功能的多肽分子。生长因子及其受体信号通路包括Ras/MAPK、PI3K/AKT和STAT等不仅调控正常细胞的生物学行为,对恶性肿瘤细胞增殖、分化、转化和迁移也具有重要意义。研究发现多种生长因子如VEGF、PDGF和IGF及其受体在多种实体肿瘤如肺癌、乳腺癌、结肠癌中发现有异常表达,在淋巴瘤如DLBCL、PTCL、ML和NL中也存在异常的共同表达,提示在淋巴瘤中可能构成生长因子及其受体的自分泌/旁分泌环路。生长因子及其受体的表达对淋巴瘤患者的预后有一定指导意义,临床研究发现表达生长因子或其受体阳性患者比表达阴性患者有较差的临床预后。这可能与生长因子及其受体对淋巴瘤细胞的增殖、转移和耐药调控有关。目前生长因子及其受体已成为潜在的药物靶点,多种生长因子及其受体抑制剂在开发和临床试验中。本文就近年来生长因子及其受体在淋巴瘤中异常表达研究进展作简要综述。  相似文献   

15.
Cell condition-dependent regulation of ERK5 by cAMP   总被引:2,自引:0,他引:2  
ERK5 activity is increased by agents known to activate receptor tyrosine kinases, G-protein coupled receptors, and stress response pathways. We now find a role for cAMP in the regulation of ERK5. ERK5 is activated by forskolin, isoproterenol, and epinephrine in NIH3T3 cells and C2C12 myoblasts. ERK1/2 are also activated by cAMP in NIH3T3 cells, but not in C2C12 myoblasts, demonstrating differential regulation of ERK5 and ERK1/2 by cAMP. We examined the effect of cell context on activation of ERK5 and discovered ERK5 activity is inhibited, rather than activated, by cAMP in confluent, serum-deprived NIH3T3 cells and C2C12 myoblasts. Our results suggest that regulation of MAP kinase pathways by cAMP is not only dictated by cell type, but also by cell context.  相似文献   

16.
Cells can change their function by rapidly modulating the levels of certain proteins at the plasma membrane. This rapid modulation is achieved by using a specialised trafficking process called constitutive cycling. The constitutive cycling of a variety of transmembrane proteins such as receptors, channels and transporters has recently been directly demonstrated in a wide range of cell types. This regulation is thought to underlie important biological phenomena such as learning and memory, gastric acid secretion and water and blood glucose homeostasis. This review discusses the molecular mechanisms of constitutive cycling, its regulation by extracellular agents such as hormones and its misregulation in disease states.  相似文献   

17.
18.
BMP signaling in the control of skin development and hair follicle growth   总被引:4,自引:0,他引:4  
Bone morphogenetic proteins (BMPs), their antagonists, and BMP receptors are involved in controlling a large number of biological functions including cell proliferation, differentiation, cell fate decision, and apoptosis in many different types of cells and tissues during embryonic development and postnatal life. BMPs exert their biological effects via using BMP-Smad and BMP-MAPK intracellular pathways. The magnitude and specificity of BMP signaling are regulated by a large number of modulators operating on several levels (extracellular, cytoplasmic, nuclear). In developing and postnatal skin, BMPs, their receptors, and BMP antagonists show stringent spatio-temporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. Genetic studies assert an essential role for BMP signaling in the control of cell differentiation and apoptosis in developing epidermis, as well as in the regulation of key steps of hair follicle development (initiation, cell fate decision, cell lineage differentiation). In postnatal hair follicles, BMP signaling plays an important role in controlling the initiation of the growth phase and is also involved in the regulation of apoptosis-driven hair follicle involution. However, additional efforts are required to fully understand the mechanisms and targets involved in the realization of BMP effects on distinct cell population in the skin and hair follicle. Progress in this area of research will hopefully lead to the development of new therapeutic approaches for using BMPs and BMP antagonists in the treatment of skin and hair growth disorders.  相似文献   

19.
The glomerulus is a complex structure including four cell types, namely mesangial, visceral epithelial, parietal epithelial and endothelial cells. Mesangial cells resemble smooth muscle cells and play a major role in the synthesis of the components of the glomerular basement membrane and in the vasoreactivity of the glomerular tuft. In particular, they express receptors for angiotensin II which mediate mesangial cell contraction, this effect resulting in the decrease of the filtration area. They are also the site of synthesis of a variety of inflammatory agents which are involved in the development of glomerular injury in glomerulonephritis. Visceral epithelial cells, also referred to a podocytes, also participate in the synthesis of the normal constituents of the glomerular basement membrane. They express receptors for atrial natriuretic factor and possess on their surface a number of ectoenzymes. They also, in concert with mesangial cells, release metalloproteases which contribute to the degradation of the extracellular matrix. Parietal epithelial cells have been little studied. They represent the main constituent of the crescents observed in extracapillary proliferative glomerulonephritis. Endothelial cells secrete vasodilatory agents such as nitric oxide and prostacyclin and vasoconstrictor agents such as endothelin which act on the adjacent mesangial cells. New methods of culture of glomerular cells are in progress. Their aim is to keep as long as possible the physiological phenotype of these cells. Another progress is the availability of stable transformed cell lines which represent an abundant source of material for biochemical studies.  相似文献   

20.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号