首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A helically coiled filamentous structure, termed the truncated cone originally identified in Haliotis discus , was demonstrated to exist in the apex of the acrosome subjacent to the outer acrosomal membrane of the sperm in two species of Gastropoda, Sulculus aquatilis and Turbo cornutus . Thin section and whole mount preparations revealed that in intact sperm this filamentous structure consisted of about 12 helically arranged filaments with a diameter of 10–12 nm which were tightly packed in a truncated shape. This truncated cone elongated anteriorly from the acrosomal opening and transformed into a cylinder which closely surrounds the acrosomal process during the acrosome reaction. In S. aquatilis and T. cornutus , the truncated cone elongated more than 3 and 1.5 times as long as the original height, respectively. The elongated truncated cone was characterized by striations with increase in its periodic spacing and inclinations in thin sections. The truncated cone in both the species was fundamentally analogous to that of Haliotis discus , further suggesting that the truncated cone plays a role in fertilization as a common cytoskeletal structure among the species of Gastropoda.  相似文献   

2.
The spermatozoon of the Japanese abalone, Haliotis discus , and its structural changes during the acrosome reaction were observed by electron microscopy. The spermatozoon has a huge acrosome in the shape of a hanging bell or a forefinger with a deep fossa at the posterior end being filled with a bundle of microfilaments. The membranes of the acrosomal apex, the so-called trigger region, are structurally discernible from those of other acrosomal regions. Following the trigger region, a unique structure under the acrosomal membrane covers the surface of the acrosomal content in the form of a truncated cone.
The acrosome reaction occurs in the jelly layer very close to the egg envelope. First, the membranes at the apex of the acrosome are vesiculated, followed by the formation of a narrow gap between the outer acrosomal membrane and the acrosomal content. Next, the bundle of micro-filaments elongates, running through the center of the acrosome, reaching the trigger region and protruding out of the acrosomal top. Then release of the acrosomal content occurs in two steps, disclosing the "membrane undercoating structure" that comprises globular particles with a fuzzy material connecting them. This resembles the undercoat network found in erythrocytes.  相似文献   

3.
An axial rod in abalone ( Haliotis discus ) sperm is a structure composed of a bundle of actin filaments, which elongates anteriorly to form the acrosomal process during the acrosome reaction. The ultrastructure of the actin filament bundle constituting the axial rod was examined using quick freeze technique followed by either freeze-substitution or deep-etch electron microscopy. Thin sections of quick freeze and freeze-substituted sperm revealed that the actin filaments in the axial rod are hexagonally packed in a paracrystalline array through its almost entire length with an average center-to-center spacing of 12 nm. Periodic transverse bands were also observed across the actin filament bundle, which may reflect the cross-bridges interconnecting the adjacent filaments. Quick-freeze deep-etch analysis provided the three-dimensional view of the axial rod. Actin filaments exhibiting 5.5–6 nm spaced striations were observed to run in parallel with each other inside the axial rod. The existence of cross-bridging structures was also displayed between adjacent filaments. These results suggest that the actin filaments in the axial rod are probably held together by regularly spaced cross-bridges to form a well ordered hexagonally packed bundle, and also cross-linked by fibrous structure to the lateral inner acrosomal membrane which closely surrounds the anterior half of the actin filament bundle.  相似文献   

4.
Summary Fine structural changes in the egg and sperm are described during gamete interaction in Oikopleura dioica, an appendicularian tunicate. The unfertilized egg has a vitelline layer 80 nm thick and a perivitelline space about 5 m wide. In the peripheral cytoplasm are a few cortical granules 0.6×0.7 m in diameter and areas rich in parallel cisternae of rough endoplasmic reticulum alternating with areas rich in long mitochondria. In the deeper cytoplasm the predominant organelles are multivesicular bodies. From 25 s to 60 s after insemination, the egg transiently elongates, although with no obvious cytoplasmic rearrangement, and the egg surface becomes bumpy. During this interval sperm enter the egg, and the cortical granules undergo exocytosis. After expulsion into the perivitelline space, the cortical granule contents do not appear to change their shape or blend with the vitelline layer, which neither elevates further nor loses its ability to bind sperm. On encountering the egg, the sperm undergoes an acrosome reaction involving exocytosis of the acrosome and production of an acrosomal tubule. The acrosomal contents bind the sperm to the vitelline layer, and the posterior portion of the acrosomal membrane and the anterior portion of the nuclear envelope evaginate together to form an acrosomal tubule, which fuses with the egg plasma membrane to form a fertilization cone. By 45 s after insemination, the sperm nucleus, centriole, mitochondrion and at least the anterior portion of the axoneme are within the fertilization cone. By 60 s sperm entry is complete. In having eggs with a cortical reaction and sperm with an acrosome reaction, O. dioica resembles echinoderms and enteropneusts and differs markedly from ascidian tunicates, which lack both these features. The relatively unmodified pattern of gamete interaction in O. dioica in comparison with the highly modified pattern in ascidians is difficult to reconcile with the neoteny theory that appendicularians have evolved via ascidian ancestors. The present results are more consistent with the idea that an appendicularian-like ancestor gave rise to ascidians.  相似文献   

5.
Spermatozoa of abalone Haliotis discus were examined before and during the acrosome reaction with special regard to one of the newly formed structures: a cylindrical structure surrounding a part of the elongated acrosomal process near the opening of the acrosomal vesicle. The structure, about 0.2 μm in diameter and about 1 μm in length, was revealed to be composed of a tightly coiled, fine tubular structure about 20 nm in diameter. In the course of the acrosome reaction, a triple-spiral structure appeared in the anterior part of the acrosomal vesicle. Since this spiral structure was also composed of a tightly coiled 20 nm tubule(s), it was concluded that this structure was transformed into the single-walled cylindrical structure by simple stretching in the direction of its longitudinal axis. In the clumps of spermatozoa that underwent acrosome reaction in suspension, the cylindrical structures were frequently found in contact with each other and/or other structures, indicating that they are very sticky.  相似文献   

6.
The distribution of intramembrane particles in the plasma and acrosomal membranes of sperm of the Japanese abalone, Haliotis discus , and its changes during the acrosome reaction were studied by the freeze-fracture replica technique. The P face of the plasma membrane covering the acrosome has sparse membrane particles except in the apical region, which includes the trigger and 'truncated cone' regions. Large particles with an average diameter of 10 nm are located in this apical region. The E face of the plasma membrane has only a few particles. On the outer acrosomal membrane, many particles are randomly distributed throughout the P face, but only a small number of particles are found on the E face. Numerous particles on the P face of the inner acrosomal membrane show a regular arrangement as a dense lattice or with a concentric circular pattern. The initial change in the acrosome reaction is clearance of membrane particles from both the P and E faces of the plasma and outer acrosomal membranes around the apical region, where fusion of the two membranes occurs. As the acrosomal process elongates, the dense arrangement of particles on the inner acrosomal membrane changes via a loose lattice arrangement to a patchy distribution with particle-free areas. Then the arrangement is further disorganized becoming a sparse, random distribution.  相似文献   

7.
Proacrosomal vesicles form during the pachytene stage, being synthetized by the Golgi complex in Glycymeris sp., and by both the Golgi and the rough endoplasmic reticulum in Eurhomalea rufa. During early spermiogenesis, a single acrosomal vesicle forms and its apex becomes linked to the plasma membrane while it migrates. In Glycymeris sp., the acrosomal vesicle then turns cap-shaped (1.8 μm) and acquires a complex substructure. In E. rufa, proacrosomal vesicles differentiate their contents while still at the premeiotic stage; as the acrosomal vesicle matures and its contents further differentiate, it elongates and becomes longer than the nucleus (3.2 μm), while the subacrosomal space develops a perforatorium. Before condensation, chromatin turns fibrillar in Glycymeris sp., whereas it acquires a cordonal pattern in E. rufa. Accordingly, the sperm nucleus of Glycymeris sp. is conical and elongated (8.3 μm), and that of E. rufa is short and ovoid (1.1 μm). In the midpiece (Glycymeris sp.: 1.1 μm; E. rufa: 0.8 μm), both species have four mitochondria encircling two linked orthogonal (Glycymeris sp.) or orthogonal and tilted (30–40°; E. rufa) centrioles. In comparison with other Arcoida species, sperm of Glycymeris sp. appear distinct due to the presence of an elongated nucleus, a highly differentiated acrosome, and four instead of five mitochondria. The same occurs with E. rufa regarding other Veneracea species, with the acrosome of the mature sperm strongly resembling that of the recent Mytilinae. Electronic Publication  相似文献   

8.
Spermatids must precisely integrate specific molecules into structurally supported domains that develop during spermatogenesis. Once established, the architecture of the acrosome contributes to the acrosome reaction, which occurs prior to gamete interaction in mammals. The present study aims to clarify the morphology associated with the integration of the mouse fertilization-related acrosomal protein equatorin (mEQT) into the developing acrosome. EQT mRNA was first detected by in situ hybridization in round spermatids but disappeared in early elongating spermatids. The molecular size of mEQT was approximately 65 kDa in the testis. Developmentally, EQT protein was first detected on the nascent acrosomal membrane in round spermatids at approximately step 3, was actively integrated into the acrosomal membranes of round spermatids in the following step and then participated in acrosome remodeling in elongating spermatids. This process was clearly visualized by high-resolution fluorescence microscopy and super-resolution stimulated emission depletion nanoscopy by using newly generated C-terminally green-fluorescent-protein-tagged mEQT transgenic mice. Immunogold electron microscopy revealed that mEQT was anchored to the acrosomal membrane, with the epitope region observed as lying 5–70 nm away from the membrane and was associated with the electron-dense acrosomal matrix. This new information about the process of mEQT integration into the acrosome during spermatogenesis should provide a better understanding of the mechanisms underlying not only acrosome biogenesis but also fertilization and male infertility.  相似文献   

9.
We previously targeted EGFP (a mutant of green fluorescent protein) to the lumen of the mouse sperm acrosome and reported the time course of EGFP release during the acrosome reaction. In the study reported here, we estimated the pH within the mouse sperm acrosome utilizing the pH-dependent nature of EGFP fluorescence. The average intra-acrosomal pH was estimated to be 5.3 +/- 0.1 immediately after sperm preparation, gradually increasing to 6.2 +/- 0.3 during 120 min of incubation in TYH media suitable for capacitation. Spontaneous acrosome reactions were noted to increase concomitantly with acrosomal alkalinization during incubation. We also demonstrated that acrosomal antigens detected by monoclonal antibodies MN7 and MC41 did not dissolve following the acrosome reaction in pH 5.3 media, but dissolved at pH 6.2. These data suggest that acrosomal alkalinization during incubation conducive for sperm capacitation may function to alter acrosomal contents and prepare them for release during the acrosome reaction.  相似文献   

10.
The spermatids are connected to a central cytophore by cytoplasmic bridges and are polarized in the sequence: "empty cytoplasm"; uncondensed nucleus; mitochondria which surround the distal region of the nucleus and the centrioles; axoneme; posterolateral to the base of the axoneme, the Golgi apparatus and (when secreted) the acrosomal rudiment. The dome-shaped acrosome vesicle elongates progressively as it migrates to the tip of the elongating and condensing nucleus; subacrosomal material gives rise to an almost equally long, tubular, thick-walled perforatorium. After the acrosome has greatly elongated, the mitochondria are reduced to two, which lose their rounded form and invest the growing axoneme to give a very elongate midpiece. Transfer of materials from nucleus to mitochondria is discussed. Microtubules surrounding the acrosome and nucleus disappear by maturity, but those internal to the mitochrondria apparently persist as the accessory microtubules, unique in the Annelida, which surround the 9 + 2 axoneme. Microvilli of the egg envelope, which have tetrads of terminal branches (epivitelline projections) resembling epicuticular projections, are less than 1 μm long, whereas the mature acrosome exceeds 5 μm. This suggests that the correlation seen in oligochaetes is absent.  相似文献   

11.
During fertilization in Limulus, the spermatozoa first attach to the egg and then undergo an acrosomal reaction. In this reaction, the acrosomal vesicle exocytoses, and a long, preformed acrosomal filament is extruded (and subsequently penetrates the egg chorion). The egg surface component that triggers the acrosome reaction has not yet been solubilized; therefore, previous studies have examined either spontaneous acrosome reactions or acrosome reactions that were triggered by eggs (or insoluble egg fragments), elevated extracellular Ca2+, or Ca2+ ionophores. In this study, we report a new method for initiating acrosome reactions in Limulus sperm. When the Limulus sperm motility-initiating peptide (SMI) is added to sperm in K+-free sea water, greater than 90% acrosome reactions are initiated within 5 min. However, less than 5% acrosome reactions occur either in K+-free sea water lacking SMI or when SMI is added to sperm in either normal sea water or K+- and Ca2+-free sea water. Experiments with K+ ionophores (nigericin and valinomycin), a K+ channel blocking agent (tetraethyl ammonium), an Na+ ionophore (monensin), and reagents that increase the intracellular pH (monensin, nigericin, and NH4Cl) indicate that changes in intracellular K+, Na+, or H+ do not mediate SMI-initiated acrosome reactions. The K+/Ca2+ ratio determines whether or not SMI will initiate acrosome reactions, with greater than 50% acrosome reactions being initiated when this ratio is below 0.3. In that K+ movement does not appear to be the critical event, possibly the K+/Ca2+ ratio either determines the rate of Ca2+ entry or controls the conformation of sperm surface molecules to allow SMI to initiate acrosome reactions in low K+.  相似文献   

12.
Summary The developing outer layer of the vitelline membrane of the ovum in the posterior part of the infundibulum of the domestic fowl contains many spermatozoa in nearly parallel orientation with its inner layer. When the acrosomal region of a spermatozoon approaches or contacts the inner layer, promptly undergoes the acrosome reaction. The outer acrosomal membrane and overlying plasma membrane fuse together and the apical region of the acrosome opens, so that the acrosomal contents are released. Meanwhile the spermatozoon remains a time in contact with the surface of the inner layer, and the network of the inner layer just under the tip of the sperm head begins to be dissolved. This dissolution extends downward forming a tunnel, approximately 9 m in diameter. The spermatozoon then passes through the inner layer obliquely via the central region of the tunnel and arrives at the perivitelline space.The authors are greatly indebted to assoc. prof. Dr. Osamu Koga for his valuable advices. The authors also wish to thank Mr. Takayuki Mori for his helpful suggestions and technical advices. This investigation was supported by a grant from the Ministry of Education of Japan (156185)  相似文献   

13.
The ultrastructure of spermatozoa from the cauda epididymidis and vas deferens of Octodon degus-a Chilean hystricomorph rodent-is presented. The head of spermatozoa measured 7.7 micrometer long by 5.9 micrometer wide and the tail was 41 micrometer long. The head was flattened dorso-ventrally and ovate in outline. The acrosome was the most distinctive feature of O. degus spermatozoa. In a frontal view of the head, the rim of the acrosome surrounding the nucleus had the shape of an inverted U. The acrosomal region covering the plane of the flattened head exhibited dome-shaped protrusions. Transverse or sagittal sections of acrosomal protrusions showed that the plasma membrane and outer acrosomal membrane were evaginated, while the inner acrosomal membrane followed the contour of the nucleus. The protrusions were not distributed at random and they were absent in the equatorial segment and in the rim of the acrosome. In frontal views, near the boundary between the acrosome and post-acrosomal region, fine rods about 170 nm long ran obliquely on the caudal part of the equatorial segment. Behind the same boundary, the post-acrosomal region showed a serrated border. Phosphotungstic acid treatment at pH 0.3 produced staining at the surface of the sperm as well as within a superficial layer of the marginal thickening of the acrosome and on the acrosomal protuberances.  相似文献   

14.
We examined whether phospholipase A2 (PLA2) is involved in the initiation of the acrosome reaction of sperm of the sea urchin, Strongylocentrotus intermedius , using inhibitors and an activator of this enzyme. Quinacrine and p-bromophenacyl bromide (PBPB) inhibited the egg jelly-induced acrosome reaction at 100 μM, but not the ionomycin-induced one. Depression of egg jelly-induced increase of intracellular free Ca2+concentration ([Ca2+]i) by these reagents was expected and examined using fura 2. Quinacrine interfered with the flourescence of fura 2, but PBPB was found to depress at concentrations which could inhibit the acrosome reaction. Furthermore, melittin, which is known to stimulate PLA2, caused a [Ca2+]i increase and a formation of acrosomal process-like structure on sperm head. These results suggest that PLA2 participates in the early step(s) of the acrosome reaction of sea urchin sperm.  相似文献   

15.
Sperm incorporation and the formation of the fertilization cone with its associated microvilli were investigated by scanning electron microscopy of eggs denuded of their vitelline layers with dithiothreitol or stripped of their elevating fertilization coats by physical methods. The activity of the elongating microvilli which appear to engulf the entering spermatozoon was recorded in living untreated eggs with time-lapse video microscopy. Following the acrosome reaction, the elongated acrosomal process connects the sperm head to the egg surface. About 15 microvilli adjacent to the attached sperm elongate at a rate of 2.6 μm/min and appear to engulf the sperm head, midpiece, and sperm tail. These elongate microvilli swell to form the fertilization cone (average height, 6.7 ± 2.0 μm) and are resorbed as the sperm tail enters the egg cytoplasm 10 min after insemination. Cytochalasin B, an inhibitor of microfilament motility, completely inhibits the observed egg plasma membrane surface activity in both control and denuded eggs. These results argue for a role of the microfilaments found in the egg cortex and microvilli as necessary for the engulfment of the sperm during incorporation and indicate that cytochalasin interferes with the fertilization process at this site.  相似文献   

16.
The structure of mature and developing euspermatozoa of the rissoacean gastropod Stenothyra sp. has been studied using transmission electron microscopy. During cuspermiogenesis nuclei pass through fibrillar and lamellar phases of condensation. A Golgi-derived acrosome attaches to the nucleus during the fibrillar phase. Spherical mitochondria of early euspermatids fuse to form the mitochondrial sheath which undergoes metamorphosis to form helical midpiece elements, paracrystalline material and helical midpiece compartments. Mature euspermatozoa consist of a flat acrosome (acrosomal cone, axial rod, basal plate), short curved nucleus (2.5–2.8 μm) and elongate midpiece and glycogen piece. Coarse fibres associated with the axoneme emerge from a posterior invagination of the nucleus and continue into the initial portion of the midpiece. In the proximal portion of the midpiece, two helical compartments (filled with membranous material) are present—only one of which persists further posteriorly. No compartments occur in the distal region of the midpiece. Posterior to the midpiece, the axoneme is surrounded by tightly-packed (glycogen) granules and terminates within this region. The distal end of the euspermatozoon consists solely of glycogen granules surrounded by the plasma membrane. Although coarse fibres (associated with the axoneme), midpiece paracrystalline material and helical compartments are commonly reported in sperm of euthyneuran gastropods, this represents the first report of all three features in any prosobranch euspermatozoon.  相似文献   

17.
Mammalian sperm do not respond to inducers of the acrosome reaction immediately after ejaculation. They become responsive after they are removed from seminal plasma and incubated in an appropriate medium. We tested the effects of seminal plasma on the development of acrosomal responsiveness. Washed human sperm incubated 24 hr in vitro with 10% (v/v) seminal plasma did not complete an acrosome reaction when exposed to human follicular fluid, progesterone, or ionomycin. Seminal plasma did not reduce sperm viability or motility. Electron microscopy of sperm incubated 24 hr with 5% seminal plasma and then treated with progesterone revealed no sign of membrane fusion or other changes that are associated with the acrosome reaction. During a 12-hr incubation, seminal plasma was 50% effective at inhibiting the acrosomal response to progesterone when diluted 821 ± 112 foid (mean ±SD, n = 3). Sperm that were incubated with seminal plasma for 24 hr and then washed free of the seminal plasma became acrosomally responsive over the following 24 hr, at a rate similar to that of sperm not incubated with seminal plasma in vitro. When sperm were incubated 6 hr without seminal plasma and then seminal plasma was added, the sperm population transiently became more responsive to progesterone, and then became unresponsive. During incubation in vitro, the ability of sperm to have an augmented response to a mixture of seminal plasma plus progesterone developed slightly earlier and more rapidly than ability to respond to progesterone alone. When sperm were incubated 24 hr without seminal plasma, a few acrosome reacted in response to the addition of seminal plasma alone. Therefore, depending on how it is applied, seminal plasma can prevent or reverse the development of acrosomal responsiveness, and it can enhance or induce the acrosome reaction. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Summary In order to study the acrosome reaction in boar, spermatozoa were incubated in a calcium-containing medium in the presence of the calcium ionophore A23187. The time course of the acrosome reaction was assessed by phasecontrast microscopy and correlated with the movement characteristics of the spermatozoa determined by means of multiple-exposure photography (MEP). Different stages of the acrosome reaction could be observed by indirect immunofluorescence using an antibody fraction raised in rabbits against the isolated outer acrosomal membrane (OAM). At the start of the acrosome reaction, a bright fluorescence located exclusively at the acrosomal cap of the sperm head could be observed, whereas after 60–120 min, the fluorescence vanished, indicating the complete loss of the OAM. However, to gain more insight into the stages of the plasma membrane and OAM during the acrosome reaction, immunoelectron-microscopical studies were performed using anti-OAM antibodies detected by the protein-A gold method. Ultrathin sections and total preparations in combination with transmission electron microscopy (TEM) confirmed, that boar spermatozoa start their acrosome reaction by a vesiculation of the plasma membrane, thus exposing the heavily labelled OAM, which is then lost as sheets or large vesicles. The newly exposed inner acrosomal membrane did not show any labelling with gold, thereby indicating clear differences in the antigenicity of both acrosomal membranes.  相似文献   

19.
Cytochalasin B inhibits the penetration of sperm nuclei into Urechis eggs without inhibiting sperm-induced egg activation. The acrosome reaction appears normal, and plasma membranes of the acrosomal tubule and egg become closely apposed. It is uncertain whether or not the drug blocks fusion of these membranes; however, sperm penetration cone formation is inhibited.  相似文献   

20.
Characterization of matrix domains of the hamster acrosome   总被引:1,自引:0,他引:1  
In this study we describe the purification and the structural and biochemical properties of a detergent-stable complex of the hamster sperm acrosome. This complex consists of two distinct acrosomal matrix domains and a layer of electron-dense material, termed the acrosomal lamina, derived from the luminal surface of the outer acrosomal membrane. This complex has been isolated by centrifugation of detergent-extracted sperm suspensions on Percoll density gradients. The complex contains two major polypeptides of Mr 29,000 and Mr 22,000 and minor polypeptides of Mr 64,000-62,000, 56,000 and 35,000. Gelatin-containing sodium dodecyl sulfate-polyacrylamide gels demonstrate that bands of proteinase activity are not the major polypeptide components of the complex. These data demonstrate that the matrix of the acrosome is compartmentalized into domains of differing structural properties that occupy specific locations in the intact acrosome and that matrix components are physically associated with the outer acrosomal membrane. These data indicate that a structural framework is present within the acrosome and we speculate that it may be involved in sequestering hydrolases into specific spatial domains and could affect the temporal release of activity of selected hydrolases during the acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号