首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hirao I  Harada Y  Nojima T  Osawa Y  Masaki H  Yokoyama S 《Biochemistry》2004,43(11):3214-3221
Colicin E3 is a ribonuclease that specifically cleaves at the site after A1493 of 16S rRNA in Escherichia coli ribosomes, thus inactivating translation. To analyze the interaction between colicin E3 and 16S rRNA, we used in vitro selection to isolate RNA ligands (aptamers) that bind to the C-terminal ribonuclease domain of colicin E3, from a degenerate RNA pool. Although the aptamers were not digested by colicin E3, they specifically bound to the protein (K(d) = 2-14 nM) and prevented the 16S rRNA cleavage by the C-terminal ribonuclease domain. Among these aptamers, aptamer F2-1 has a sequence similar to that of the region around the cleavage site from residue 1484 to 1506, including the decoding site, of E. coli 16S rRNA. The secondary structure of aptamer F2-1 was determined by the base pair covariation among the variants obtained by a second in vitro selection, using a doped RNA pool based on the aptamer F2-1 sequence. The sequence and structural similarities between the aptamers and 16S rRNA provide insights into the recognition of colicin E3 by this specific 16S rRNA region.  相似文献   

3.
An heterologous complex was formed between E. coli protein L1 and P. vulgaris 23S RNA. We determined the primary structure of the RNA region which remained associated with protein L1 after RNase digestion of this complex. We also identified the loci of this RNA region which are highly susceptible to T1, S1 and Naja oxiana nuclease digestions respectively. By comparison of these results with those previously obtained with the homologous regions of E. coli and B. stearothermophilus 23S RNAs, we postulate a general structure for the protein L1 binding region of bacterial 23S RNA. Both mouse and human mit 16S rRNAs and Xenopus laevis and Tetrahymena 28S rRNAs contain a sequence similar to the E. coli 23s RNS region preceding the L1 binding site. The region of mit 16S rRNA which follows this sequence has a potential secondary structure bearing common features with the L1-associated region of bacterial 23S rRNA. The 5'-end region of the L11 mRNA also has several sequence potential secondary structures displaying striking homologies with the protein L1 binding region of 23S rRNA and this probably explains how protein L1 functions as a translational repressor. One of the L11 mRNA putative structures bears the features common to both the L1-associated region of bacterial 23S rRNA and the corresponding region of mit 16S rRNA.  相似文献   

4.
We identified a short RNA fragment, complementary to the Escherichia coli 23S rRNA segment comprising nucleotides 735 to 766 (in domain II), which when expressed in vivo results in the suppression of UGA nonsense mutations in two reporter genes. Neither UAA nor UAG mutations, examined at the same codon positions, were suppressed by the expression of this antisense rRNA fragment. Our results suggest that a stable phylogenetically conserved hairpin at nucleotides 736 to 760 in 23S rRNA, which is situated close to the peptidyl transferase center, may participate in one or more specific interactions during peptide chain termination.  相似文献   

5.
The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans, has been determined. Its coding region is estimated to be 1,487 base pairs long, which is nearly identical to those reported for chloroplast 16S rRNA genes and is about 4% shorter than that of the Escherichia coli gene. The 16S rRNA sequence of A. nidulans has 83% homology with that of tobacco chloroplast and 74% homology with that of E. coli. Possible stem and loop structures of A. nidulans 16S rRNA sequences resemble more closely those of chloroplast 16S rRNAs than those of E. coli 16S rRNA. These observations support the endosymbiotic theory of chloroplast origin.  相似文献   

6.
7.
8.
Two large ribonucleic acid (RNA) fragments have been obtained from T1-RNase-treated 30S ribosomes of Escherichia coli. One fragment, about 475 nucleotides long, contains all the unique oligonucleotides found by Fellner and associates in sections of 16S RNA designated P, E, E', and K, and one-half the large oligonucleotides of section A. The other large fragment is about 300 nucleotides long and contains the oligonucleotides found in sections C, C', C'. The isolation of these large fragments seems to confirm the arrangement of sections within 16S RNA. There are also recovered from nuclease-treated ribosomes three small fragments, one (120 nucleotides long) from the 5' end, one (26 nucleotides long) from the 3' OH end of the chain, and another section (66 nucleotides long) from the middle of the 16S RNA chain. Small molecular weight material is also generated by nuclease treatment, and about half this material is derived from a region close to the 3' OH end of the 16S RNA chain. This indicates that the most accessible part of the rRNA of E. coli 30S ribosomes is a region 100 to 150 nucleotides long near the 3' end of the chain. A general scheme is proposed to explain the generation of the various-sized RNA products from the rRNA of the 30S ribosome.  相似文献   

9.
Refined molecular weights for phage, viral and ribosomal RNA.   总被引:3,自引:0,他引:3  
The RNAs of the Escherichia coli bacteriophages MS2 and Qbeta as well as E. coli 16S ribosomal RNA were examined under identical conditions by electron microscopy using the protein-free benzyldimethylalkylammonium chloride (BAC) spreading technique. From the contour length ratios of the RNAs and the known number of nucleotides for MS2, the chain lengths for Qbeta RNA and 16S RNA were found to be 4790 +/- 150 and 1645 +/- 55 nucleotides. Correcting for the base composition of Qbeta RNA the molecular weight of the Na salt of this RNA is (1.64 +/- 0.06) . 10(6) daltons. Since published values on the relative lengths of Qbeta RNA and several other homogeneous RNAs (E. coli 23S rRNA, E. Coli bacteriophage R17 and f2 RNAs, Pseudomonas aeruginosa phage PP7 RNA and Newcastle disease virus RNA) are available, we are able to calculate the approximate number of nucleotides for these useful standards.  相似文献   

10.
11.
12.
Aminomethyltrioxsalen (AMT), a psoralen, is known to cause interstrand crosslinks in double stranded nucleic acids. We have demonstrated the photochemical reversal of this reaction, and have used this result to develop a method for identification of specific sequences which are adjacent because of RNA secondary structure formation. E. coli 5S rRNA is used as a model system. We isolated and characterized a product that is derived from the stem region of 5S RNA.  相似文献   

13.
14.
The conserved portion in bacterial ribosomal RNA was studied by the DNA-RNA hybridization method. The hybridization percentages were as follows: Bacillus subtilis DNA and B. subtilis 23S rRNA, 0.16; Escherichia coli DNA and E. coli 23S rRNA, 0.15; B. subtilis DNA and E. coli 23S rRNA, 0.03; E. coli DNA and B. subtilis 23S rRNA, 0.04. The RNA's extracted from the heterologous hybrids could be rehybridized with DNA's of B. subtilis and E. coli. The average chain lengths of the RNA's were estimated by sucrose density gradient centrifugation and Sephadex gel filtration. The results suggested that the size might be larger than 30 nucleotides. Nucleotide compositions of the RNA's in the hybrids were also studied. Both RNA's contained higher molar percentages of guanylic acid and cytidylic acid than the whole rRNA's.  相似文献   

15.
本文给出了一个利用已知能量数据构成具有最小自由能的单链RNA分子二级结构的计算机算法,并给出了此算法的可行性证明和应用实例。  相似文献   

16.
Extensive studies in our laboratory using different ribonucleases resulted in valuable data on the topography of the E.coli 16S ribosomal RNA within the native 30S subunit, within partially unfolded 30S subunits, in the free state, and in association with individual ribosomal proteins. Such studies have precise details on the accessibility of certain residues and delineated highly accessible RNA regions. Furthermore, they provided evidence that the 16S rRNA is organized in its subunit into four distinct domains. A secondary structure model of the E.coli 16S rRNA has been derived from these topographical data. Additional information from comparative sequence analyses of the small ribosomal subunit RNAs from other species sequenced so far has been used.  相似文献   

17.
M F Guérin  D Hayes 《Biochimie》1983,65(6):345-354
Total RNA prepared from E. coli by several extraction procedures behaves as a mixture of covalently continuous heat stable 23S, 16S and 4-5S components. 16S rRNA remains heat stable after isolation from such preparations, whereas isolated 23S rRNA is heat labile but becomes heat stable after EDTA treatment. This and other evidence leads to the conclusion that heat lability of purified 23S rRNA is due, not to nuclease contamination of the type observed in earlier studies of the stability of this RNA, but to polyvalent cation catalyzed temperature-dependent scission of phosphodiester bonds. Heat stability of 23S rRNA in total RNA is due to the presence in these preparations of a contaminant which appears to act as a chelator of polyvalent cations. This material is similar or identical to the pyrogenic E. coli lipopolysaccharide described by Westphal and coll.  相似文献   

18.
19.
20.
We have determined the sequences of the 3'-terminal approximately 100 nucleotides of [5' -32P]pCp-labeled wheat mitochondrial, wheat cytosol, and E. coli small sub-unit rRNAs. Sequence comparison demonstrates that within this region, there is a substantially greater degree of homology between wheat mitochondrial 18S and E. coli 16S rRNAs than between either of these and wheat cytosol 18S rRNA. Moreover, at a position occupied by 3-methyluridine in E. coli 16S rRNA, the same (or a very similar) modified nucleoside is present in wheat mitochondrial 18S rRNA but not in wheat cytosol 18S rRNA. Further, E. coli 16S and 23S rRNAs hybridize extensively to wheat mitochondrial 18S and 26S rRNA genes, respectively, but wheat cytosol 18S and 26S rRNAs do not. No other mitochondrial system studies to date has provided comparable evidence that a mitochondrial rRNA is more closely related to its eubacterial homolog than is its counterpart in the cytoplasmic compartment of the same cell. The results reported here provide additional support for the view that plant mitochondria are of endosymbiotic, specifically eubacterial, origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号