首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   

2.
The distribution of axonally transported gangliosides and glycoproteins along the sciatic nerve was examined from 3 h to 4 weeks following injection of[3H]glucosamine into the fifth lumbar dorsal root ganglion of adult rats. Incorporation of labeled precursor into these glycoconjugates reached a maximal level in the ganglion within 6 h. Outflow patterns of radioactivity for glycoproteins showed a well-defined crest with a transport rate of approximately 330 mm/day. In contrast, the crest of transported gangliosides was continuously attenuated, implying a significant deposition along the axon, and an alternative method of calculating velocity was required. Analysis of accumulation of labeled material at double ligatures demonstrated both anterograde and retrograde transport of glycoproteins and gangliosides and allowed for the calculation of an anterograde transport rate of about 270 mm/day for each. Additional evidence of ganglioside transport is provided in that the TLC pattern of transported radioactive gangliosides accumulating at a ligature is significantly different from the pattern seen in the dorsal root ganglion or following intraneural administration of the labeled precursor. These data indicate that gangliosides are transported at the same rapid rate as glycoproteins but are subject to a more extensive exchange with stationary material than are glycoproteins.  相似文献   

3.
—An in vitro system from the frog has been used to study fast axonal transport of glycoproteins. The migration of [3H]fucose-, [3H]glucosamine- and [35S]sulphate-labelled material was followed from the dorsal ganglia, along the sciatic nerve towards the gastrocnemius muscle. The distribution in different subcellular fractions, effect of cycloheximide and transport kinetics did not differ very much between fucose- and glucosamine-incorporation into the nerve. Cycloheximide blocked the synthesis of TCA-insoluble radioactivity, which was transported at a rate of 60–90 mm per day at 18°C, more effectively than the synthesis of stationary proteins in the ganglia. About 10 per cent of the TCA-insoluble and transported radioactivity was extracted by chloroform-methanol (2:1, v/v) and might be glycolipids and the rest glycoproteins. Results suggest that TCA-soluble activity, which was recovered in the nerve, originated in part from labelled macromolecules consumed along the axons. The rapidly transported TCA-insoluble radioactivity was 85 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction. [35S]Sulphate-labelled TCA-insoluble material was resistant towards chloroform-methanol (2:1, v/v) extraction and rapidly transported from the ganglia into the nerve. The synthesis was inhibited by cycloheximide. The material, probably proteoglycans, represented a quantitatively minor part of transported glycoproteins.  相似文献   

4.
The axonal transport of proteins, glycoproteins, and gangliosides in sensory neurons of the sciatic nerve was examined in adult rats exposed to acrylamide via intraperitoneal injection (40 mg/kg of body weight/day for nine consecutive days). The L5 dorsal root ganglion was injected with either [35S]methionine to label proteins or [3H]glucosamine to label, more specifically, glycoproteins and gangliosides. At times ranging from 2 to 6 h later, the sciatic nerve and injected ganglion were excised and radioactivity in consecutive 5-mm segments determined. In both control and acrylamide-treated animals, outflow profiles of [35S]methionine-labeled proteins showed a well defined crest which moved down the nerve at a rate of approximately 340 mm/day. Similar outflow profiles and transport rates were seen for [3H]glucosamine-labeled glycoproteins in control animals. However, in animals treated with acrylamide, the crest of transported labeled glycoprotein was severely attenuated as it moved down the nerve. This finding suggests that in acrylamide-treated animals, axonally transported glycoproteins were preferentially transferred (unloaded or exchanged against unlabeled molecules) from the transport vector to stationary axonal structures. We also examined the clearance of axonally transported glycoproteins distal to a ligature on the nerve. The observed impairment of clearance in acrylamide-treated animals relative to controls is supportive of the above hypothesis. Acrylamide may directly affect the mechanism by which axonally transported material is unloaded from the transport vector. Alternatively, the increased rate of unloading might reflect an acrylamide-induced increase in the demand for axonally transported material.  相似文献   

5.
Metabolic turnover of axonally transported glycoproteins has been examined in membranous and soluble subfractions of goldfish optic tectum following intraocular injection of [3H]fucose. Radioactivity in total transported glycoproteins reached a maximum in the tectum after 24–30 hr, then declined with a half-life of approximately 20 days. Radioactivity in the total membranous subfraction declined with a similar half-life of 20–21 days while radioactivity in the soluble fraction showed a significantly shorter half-life of approximately seven days. Various sized glycopeptides derived from the membranous subfraction showed differential rates of loss of radioactivity with the lower molecular weight nondialyzable molecules displaying the most rapid turnover. In contrast, the glycopeptides derived from the soluble fraction showed relatively uniform rates of turnover. The results are discussed in the context of metabolic compartmentalization between membranous and soluble glycoproteins and among the carbohydrate chains of the membranous molecules.Supported by NIH grant NS 11456.  相似文献   

6.
Electron micrographic studies of neuronal axons have produced contradictory conclusions on how alphaherpesviruses are transported from neuron cell bodies to axon termini. Some reports have described unenveloped capsids transported on axonal microtubules with separate transport of viral glycoproteins within membrane vesicles. Others have observed enveloped virions in proximal and distal axons. We characterized transport of herpes simplex virus (HSV) in human and rat neurons by staining permeabilized neurons with capsid- and glycoprotein-specific antibodies. Deconvolution microscopy was used to view 200-nm sections of axons. HSV glycoproteins were very rarely associated with capsids (3 to 5%) and vice versa. Instances of glycoprotein/capsid overlap frequently involved nonconcentric puncta and regions of axons with dense viral protein concentrations. Similarly, HSV capsids expressing a VP26-green fluorescent protein fusion protein (VP26/GFP) did not stain with antiglycoprotein antibodies. Live-cell imaging experiments with VP26/GFP-labeled capsids demonstrated that capsids moved in a saltatory fashion, and very few stalled for more than 1 to 2 min. To determine if capsids could be transported down axons without glycoproteins, neurons were treated with brefeldin A (BFA). However, BFA blocked both capsid and glycoprotein transport. Glycoproteins were transported into and down axons normally when neurons were infected with an HSV mutant that produces immature capsids that are retained in the nucleus. We concluded that HSV capsids are transported in axons without an envelope containing viral glycoproteins, with glycoproteins transported separately and assembling with capsids at axon termini.  相似文献   

7.
Abstract: This study examined changes in composition and concanavalin A (Con A) binding of axonally transported glycoproteins and their pronase-generated glycopeptides in regenerating garfish olfactory nerve. A previous study had demonstrated a regeneration-related increase in the proportion of [3H]glucosamine label in lower-molecular-weight Con A-binding glycopeptides derived from transported glycoproteins. Further analysis of carbohydrate composition shows that these molecules resemble mannose-rich oligosaccharides in composition and are increased in absolute amount in regenerating nerve. Subcellular analysis shows that the Con A-binding glycopeptides are enriched in membrane subfractions, particularly in a high-density fraction that morphologically resembles isolated cell surface coat. Regeneration-related changes in intact axonally transported glycoproteins were also detected. Sodium dodecyl sulfate gel electrophoresis of transport-labeled glycoproteins disclosed growth-correlated increases in radioactivity associated with 180–200K, 105–115K, and 80–90K components, while a 150–160K molecular weight class of glycoproteins was diminished in relative labeling. Intact glycoproteins displaying an affinity for Con A were also augmented in regenerating nerve, the increases occurring primarily in molecules in the 50–140K range.  相似文献   

8.
For viruses that mature by a budding process, the envelope glycoproteins are considered the major determinants for the site of virus release from polarized epithelial cells. Viruses are usually released from that membrane domain where the viral surface glycoproteins are transported to. We here report that measles virus has developed a different maturation strategy. Measles virus was found to be released from the apical membrane domain of polarized epithelial cells, though the surface glycoproteins H and F were transported in a nonpolarized fashion and to the basolateral membrane domain, respectively.  相似文献   

9.
Abstract: Rapidly transported proteins and glycoproteins in the auditory and optic nerves of the guinea pig were analyzed by electrophoresis and two-dimensional electrofocusing/electrophoresis. Proteins transported in the auditory nerve were analyzed in the cochlear nucleus 3 h after cochlear injection of radioactive precursor, and proteins transported in the optic nerve were analyzed in the superior colliculus 6 h after intraocular injection of radioactive precursor. Two-dimensional analysis showed that several rapidly transported polypeptides were present in one system, but not in the other. By use of [3H]fucose as a precursor or by separating [35S]methionine-labeled polypeptides on immobilized concanavalin A or wheat germ agglutinin, it was shown that most of the proteins transported in only one system are glycoproteins. As previously reported a polypeptide of molecular weight 140,000 was a major labeled species in the auditory nerve. This polypeptide was also found in the optic nerve, but only as a minor species. Two other polypeptides with molecular weights and isoelectric points similar to those of the 140,000 molecular weight polypeptide were present in both systems, but were much more abundant in the optic nerve. The major labeled polypeptide in both systems had a molecular weight of 25,000.  相似文献   

10.
The synthesis of the maize root slime polysaccharides was investigated by using [1-3H]-fucose as a marker for slime production. Three fractions were separated by centrifugation in a CsCl density gradient. Two of these were glycoproteins and occurred within the membranes of the cells of the root tip; the third was the slime polysaccharides. Radioactive pulse-chase experiments showed that the glycoproteins were precursors of the slime polysaccharides, and the carbohydrate portion of the glycoproteins had a similar composition to that of the free slime. The linkage between the protein and the carbohydrate of one of the glycoproteins was shown to be a xylose-threonine bond. It is postulated that the slime polysaccharides are synthesized and transported on proteins within the membrane system of the root tip.  相似文献   

11.
Rapidly transported fucose-labelled glycoproteins from the optic system of the rabbit were solubilised with the non-ionic detergent Berol 172. The major labelled components were bound to wheat germ agglutinin or Concanavalin A coupled to Sepharose but not to other lectins or glycoproteins. It was concluded that rapidly transported proteins contain exposed N-acetyl-D-glucosamine  相似文献   

12.
—[3H]Leucine, [3H]glucosamine and [3H]fucose were incorporated in vitro into proteins in frog sciatic ganglia and subsequently transported at a rapid rate along the sciatic nerve towards a ligature, in front of which they accumulated. The synthesis of transported fucose-labelled proteins is closely linked to protein synthesis but is not dependent on RNA synthesis, as judged by effects after incubation for 17 h in the presence of cycloheximide and actinomycin D. Labelled ganglionic as well as transported material were solubilized in sodium dodecyl sulphate and characterized by polyacrylamide gel electrophoresis. The bulk of ganglionic proteins, labelled with any of the precursors used, had molecular weights exceeding 40,000. The radioactivity patterns of leucine- and glucosamine-labelled ganglionic proteins showed similarities with dominant peaks corresponding to molecular weights of about 75,000 and 50,000. The last peak was almost lacking in fucose-labelled ganglionic components. Leucine- and glucosamine labelled-transported proteins exhibited characteristic and similar electrophoretic distributions in contrast to the pattern of fucose-labelled nerve proteins, which was more polydisperse. The most conspicious nerve proteins corresponded to molecular weights of about 75,000 and 18,000. There was a remarkable agreement in the profile of leucine-labelled transported nerve proteins and fucose-labelled ganglionic proteins. In the light of these observations the possibility that glycoproteins constitute a large part of rapidly transported proteins will be discussed.  相似文献   

13.
Following reactivation from latency, alphaherpesviruses replicate in sensory neurons and assemble capsids that are transported in the anterograde direction toward axon termini for spread to epithelial tissues. Two models currently describe this transport. The Separate model suggests that capsids are transported in axons independently from viral envelope glycoproteins. The Married model holds that fully assembled enveloped virions are transported in axons. The herpes simplex virus (HSV) membrane glycoprotein heterodimer gE/gI and the US9 protein are important for virus anterograde spread in the nervous systems of animal models. It was not clear whether gE/gI and US9 contribute to the axonal transport of HSV capsids, the transport of membrane proteins, or both. Here, we report that the efficient axonal transport of HSV requires both gE/gI and US9. The transport of both capsids and glycoproteins was dramatically reduced, especially in more distal regions of axons, with gE(-), gI(-), and US9-null mutants. An HSV mutant lacking just the gE cytoplasmic (CT) domain displayed an intermediate reduction in capsid and glycoprotein transport. We concluded that HSV gE/gI and US9 promote the separate transport of both capsids and glycoproteins. gE/gI was transported in association with other HSV glycoproteins, gB and gD, but not with capsids. In contrast, US9 colocalized with capsids and not with membrane glycoproteins. Our observations suggest that gE/gI and US9 function in the neuron cell body to promote the loading of capsids and glycoprotein-containing vesicles onto microtubule motors that ferry HSV structural components toward axon tips.  相似文献   

14.
We recently described a 125 kd membrane glycoprotein in Saccharomyces cerevisiae which is anchored in the lipid bilayer by an inositol-containing phospholipid. We now find that when S. cerevisiae cells are metabolically labeled with [3H]myoinositol, many glycoproteins become labeled more strongly than the 125 kd protein. Myoinositol is attached to these glycoproteins as part of a phospholipid moiety which resembles glycophospholipid anchors of other organisms. Labeling of proteins with [3H]myoinositol for short times and in secretion mutants blocked at various stages of the secretory pathway shows that these phospholipid moieties can be added to proteins in the endoplasmic reticulum and that these proteins are transported to the Golgi by the regular secretory pathway. sec53, a mutant which cannot produce GDP-mannose at 37 degrees C, does not incorporate myoinositol or palmitic acid into membrane glycoproteins at this temperature, suggesting that GDP-mannose is required for the biosynthesis of these phospholipid moieties. All other secretion and glycosylation mutants tested add phospholipid moieties to proteins normally.  相似文献   

15.
Alterations in the axonal transport of proteins, glycoproteins, and gangliosides in sensory neurons of the sciatic nerve were examined in adult male rats exposed to acrylamide (40 mg ip/kg body wt/d for nine consecutive days). Twenty-four hours after the last dose, the L5 dorsal root ganglion (DRG) was injected with either [35S]methionine to label proteins or [3H]glucosamine to label glycoproteins and gangliosides. The downflow patterns of radioactivity for [35S]methionine-labeled proteins and [3H]glucosamine-labeled gangliosides were unaltered by acrylamide treatment. In contrast, the outflow pattern of labeled glycoproteins displayed a severely attenuated crest with no alteration in velocity, suggesting a preferential transfer with the unlabeled stationary components in the axolemma. Retrograde accumulation of transported glycoproteins and gangliosides was unaltered for at least 6 h; however, by 24 h, there was a 75% decrease in the amount of accumulated material. The accumulation of [35S]methionine-labeled proteins was not altered. Autoradiographic analysis revealed an acrylamide-induced paucity of transported radiolabeled glycoproteins selectively in myelinated axons with no effect on "nonmyelinated" axons. The pattern of transported proteins was similar in both control and acrylamide-exposed animals. These results suggest a preferential inhibition of glycosylation or axonal transport of glycoproteins in neurons bearing myelinated axons. More importantly, it suggests that interpretations of axonal transport data must be made with the consideration of alterations in selective nerve fibers and not with the tacit assumption that all fibers in the nerve population are equally affected.  相似文献   

16.
M Tashiro  J T Seto  H D Klenk    R Rott 《Journal of virology》1993,67(10):5902-5910
Envelope glycoproteins F and HN of wild-type Sendai virus are transported to the apical plasma membrane domain of polarized epithelial MDCK cells, where budding of progeny virus occurs. On the other hand, a pantropic mutant, F1-R, buds bipolarly at both the apical and basolateral domains, and the viral glycoproteins have also been shown to be transported to both of these domains (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J.T. Seto, J. Virol. 64:4672-4677, 1990). MDCK cells were infected with wild-type virus and treated with the microtubule-depolymerizing drugs colchicine and nocodazole. Budding of the virus and surface expression of the glycoproteins were found to occur in a nonpolarized fashion similar to that found in cells infected with F1-R. In uninfected cells, the drugs were shown to interfere with apical transport of a secretory cellular glycoprotein, gp80, and basolateral uptake of [35S]methionine as well as to disrupt microtubule structure, indicating that cellular polarity of MDCK cells depends on the presence of intact microtubules. Infection by the F1-R mutant partially affected the transport of gp80, uptake of [35S]methionine, and the microtubule network, whereas wild-type virus had a marginal effect. These results suggest that apical transport of the glycoproteins of wild-type Sendai virus in MDCK cells depends on intact microtubules and that bipolar budding by F1-R is possibly due, at least in part, to the disruption of microtubules. Nucleotide sequence analyses of the viral genes suggest that the mutated M protein of F1-R might be involved in the alteration of microtubules.  相似文献   

17.
We have studied the transport of the Uukuniemi virus membrane glycoproteins in baby hamster kidney and chick embryo cells by using a temperature-sensitive mutant (ts12). Uukuniemi virus assembles in the Golgi complex, where both glycoproteins G1 and G2 and nucleocapsid protein N accumulate (E. Kuismanen, B. B?ng, M. Hurme, and R. F. Pettersson, J. Virol. 51:137-146, 1984). At the restrictive temperature (39 degrees C), the glycoproteins of ts12 were transported to the Golgi complex as in wild-type, virus-infected cells, whereas the nucleocapsid protein failed to accumulate there. Pulse-chase labeling followed by immunoprecipitation and treatment with endo-beta-N-acetylglucosaminidase H showed that G1 synthesized at 39 degrees C in ts12-infected cells had an altered mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting a lack of terminal glycosylation. The typical Uukuniemi virus-induced vacuolization and expansion of the Golgi complex could be seen also in ts12-infected cells at 39 degrees C, although no virus particles were formed. This suggests that the morphological changes were induced by the Uukuniemi virus glycoproteins. In wild-type virus- or ts12-infected cells, G1 and G2 could not be chased out from the Golgi complex even after 6 h of treatment with cycloheximide. The glycoproteins were thus retained in the Golgi even under conditions when no virus maturation took place and when nucleocapsids did not accumulate in the Golgi region. Accordingly, the glycoproteins of Uukuniemi virus were found to have properties resembling those of Golgi-specific proteins. This virus model system may be useful in studying the synthesis and transport of membrane proteins that are transported to and retained in the Golgi.  相似文献   

18.
《The Journal of cell biology》1990,111(6):2909-2921
MDCK cells display fluid-phase transcytosis in both directions across the cell. Transcytosis of cell surface molecules was estimated by electron microscopic analysis of streptavidin-gold-labeled frozen sections of biotinylated cells. Within 3 h, approximately 10% of the surface molecules, biotinylated on the starting membrane domain, were detected on the opposite surface domain irrespective of the direction of transcytosis. This suggests that the transcytosis rates for surface molecules are equal in both directions across the cell as shown previously for fluid-phase markers. A biochemical assay was established to identify transcytosing glycoproteins in MDCKII-RCAr cells, a ricin- resistant mutant of MDCK. Due to a galactosylation defect, surface glycoproteins of these cells can be labeled efficiently with [3H]galactose. Transcytosis of [3H]galactose-labeled glycoproteins to the opposite membrane domain was detected by surface biotinylation. Detergent-solubilized glycoproteins derivatized with biotin were adsorbed onto streptavidin-agarose and separated by SDS-PAGE. A subset of the cell surface glycoproteins was shown to undergo transcytosis. Transport of these glycoproteins across the cell was time and temperature dependent. By comparative two-dimensional gel analysis, three classes of glycoproteins were defined. Two groups of glycoproteins were found to be transported unidirectionally by transcytosis, one from the apical to the basolateral surface and another from the basolateral to the apical surface. A third group of glycoproteins which has not been described previously, was found to be transported bidirectionally across the cell.  相似文献   

19.
抗寒锻炼中不同抗寒性小麦细胞膜糖蛋白的细胞化学研究   总被引:1,自引:0,他引:1  
本研究根据植物细胞的特点,修改了在动物和人体细胞方面立的酶标Con A的电镜细胞化学方法,成功地展现了2个不同抗寒性冬小麦品种幼苗在抗寒锻炼和脱锻炼过程中细胞膜系统上糖蛋白的分布动态,显示与Con A连接的标志酶-辣根过氧化物酶活性的反应产物呈颗粒状分散分布在质膜、内质网、核膜及液泡膜的一些部位上,揭示糖蛋白在冬小麦细胞膜系统上的分布似有其特定的位点。经抗寒锻炼后,强抗寒性品种燕大1817细胞内的糖蛋白在内质网和核膜上的分布量明显地增加;同时,几乎所有的胞间连丝通道中都有糖蛋白的分布。脱锻炼后,内质网和核膜上的糖蛋白分布量又减少,胞间连丝通道中的糖蛋白也消失,基本上回复到抗寒锻炼前的分布状态。抗寒性弱的冬小麦品种郑州39-1幼苗在同样的抗寒锻炼和脱锻炼过程中不产生这些明显的变化。这些结果说明,抗寒锻炼中内质网和核膜上糖蛋白分布量的增加,以及糖蛋白输入胞间连丝的动态变化是与植物抗寒力的提高和保持稳定密切相关的。  相似文献   

20.
In infected BHK21 cells, the glycoproteins G1 and G2 of a temperature-sensitive mutant (ts12) of Uukuniemi virus (UUK) accumulate at 39 degrees C in the Golgi complex (GC) causing an expansion and vacuolization of this organelle. We have studied whether such an altered Golgi complex can carry out the glycosylation and transport to the plasma membrane (PM) of the Semliki Forest virus (SFV) glycoproteins in double-infected cells. Double-immunofluorescence staining showed that approximately 90% of the cells became infected with both viruses. Almost the same final yield of infectious SFV was obtained from double-infected cells as from cells infected with SFV alone. The rate of transport from the endoplasmic reticulum (ER) via the GC to the plasma membrane of the SFV glycoproteins was analysed by immunofluorescence, surface radioimmunoassay and pulse-chase labeling followed by immunoprecipitation, endoglycosidase H digestion and SDS-PAGE. The results showed that: the SFV glycoproteins were readily transported to the cell surface in double-infected cells, whereas the UUK glycoproteins were retained in the GC; the transport to the PM was retarded by approximately 20 min, due to a delay between the ER and the central Golgi; E1 of SFV appeared at the PM in a sialylated form. These results indicate that the morphologically altered GC had retained its functional integrity to glycosylate and transport plasma membrane glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号