首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This review will focus the roles of TNF-alpha, IL-1 alpha, and IL-1 beta in the mammalian testis and in two testicular pathologies, testicular torsion and orchitis. TNF alpha in the testis is produced by round spermatids, pachytene spermatocytes, and testicular macrophages. The type 1 TNF receptor has been found on Sertoli and Leydig cells and numerous studies suggest a paracrine mode of action for TNF alpha in the normal testis. IL-1 alpha has been reported to be produced by Sertoli cells, testicular macrophages, and possibly postmeiotic germ cells. IL-1 receptors have been reported on Sertoli cells, Leydig cells, testicular macrophages, and germ cells suggesting both autocrine and paracrine functions. While these proinflammatory cytokines have important roles in normal testicular homeostasis, an elevation of their expression can lead to testicular dysfunctions. Testicular torsion is a clinical pathology with results in testicular ischemia and surgical intervention is often required for reperfusion. A pivotal role for IL-1beta in the pathology of testicular torsion has been recently described whereby an increase in IL-1beta production after reperfusion of the testis is correlated with the activation of the stress-related kinase, c-jun N-terminal kinase, and ultimately resulting in neutrophil recruitment to the testis and germ cell apoptosis. In autoimmune orchitis, on the other hand, TNF alpha produced by T-lymphocytes and macrophages of the testis has been implicated in the development and progression of the disease. Thus, both proinflammatory cytokines, TNF alpha and IL-1, have significant roles in normal testicular functions as well as in certain testicular pathologies.  相似文献   

3.
4.
The levels of IL-1alpha, IL-1beta and IL-1Ra were higher in homogenates of testicular tissue from sexually immature than those from mature mice. Immunohistochemical staining of testicular tissues from sexually immature and adult mice show that differentiated germ cells express higher levels of IL-1alpha compared to Sertoli cells and Leydig cells/interstitial cells. Peritubular cells of sexually immature and adult mice did not express IL-1alpha. Testicular tissue cells of adult mice showed high levels of expression of IL-1beta, mainly in the cytoplasm and nucleus of the spermatogonia and in spermatocytes. Sertoli cells and Leydig/interstitial cells were also highly stained for IL-1beta. However, peritubular cells did not express IL-1beta. On the other hand, testicular tissue cells from sexually immature mice, showed high levels of IL-1beta, mainly in spermatocytes. Spermatogonia showed low levels of IL-1beta expression. Also, high levels of IL-1beta expression were detected in Leydig/interstitial cells. Peritubular cells clearly showed IL-1beta expression. Testicular tissue cells from adult mice, showed IL-1Ra expression in spermatogonia, Sertoli and Leydig/interstitial cells. IL-1Ra expression was clearly present in the Golgi apparatus of spermatogonia and Sertoli cells. However, peritubular cells did not show IL-1Ra expression. Testicular tissue cells from sexually immature mice, also showed high levels of IL-1Ra expression mainly in the cytoplasm and nucleus of the spermatogonia and Sertoli cells. In addition, Leydig/interstitial cells and peritubular cells also expressed IL-1Ra. Our results demonstrate, for the first time, the expression of IL-1beta in germ and Sertoli cells, and IL-1Ra in Leydig/interstitial cells of testicular tissues from adult and sexually immature mice, under in vivo conditions. In addition, the relative elevated levels of the IL-1 system in the testis of immature mice compared to mature mice may indicate its involvement in the spermatogenesis.  相似文献   

5.
Macrophage inflammatory protein (MIP)-3alpha is a chemokine involved in the migration of T cells and immature dendritic cells. To study the contribution of proinflammatory cytokines and chemokines to the recruitment of these cells in rheumatoid arthritis (RA) synovium, we looked at the effects of the monocyte-derived cytokines IL-1beta and TNF-alpha and the T cell-derived cytokine IL-17 on MIP-3alpha production by RA synoviocytes. Addition of IL-1beta, IL-17, and TNF-alpha induced MIP-3alpha production in a dose-dependent manner. At optimal concentrations, IL-1beta (100 pg/ml) was much more potent than IL-17 (100 ng/ml) and TNF-alpha (100 ng/ml). When combined at lower concentrations, a synergistic effect was observed. Conversely, the anti-inflammatory cytokines IL-4 and IL-13 inhibited MIP-3alpha production by activated synoviocytes, but IL-10 had no effect. Synovium explants produced higher levels of MIP-3alpha in RA than osteoarthritis synovium. MIP-3alpha-producing cells were located in the lining layer and perivascular infiltrates in close association with CD1a immature dendritic cells. Addition of exogenous IL-17 or IL-1beta to synovium explants increased MIP-3alpha production. Conversely, specific soluble receptors for IL-1beta, IL-17, and TNF-alpha inhibited MIP-3alpha production to various degrees, but 95% inhibition was obtained only when the three receptors were combined. Similar optimal inhibition was also obtained with IL-4, but IL-13 and IL-10 were less active. These findings indicate that interactions between monocyte and Th1 cell-derived cytokines contribute to the recruitment of T cells and dendritic cells by enhancing the production of MIP-3alpha by synoviocytes. The inhibitory effect observed with cytokine-specific inhibitors and Th2 cytokines may have therapeutic applications.  相似文献   

6.
Liver and activation-regulated chemokine (LARC), also designated macrophage inflammatory protein-3alpha (MIP-3alpha), Exodus, or CCL20, is a C-C chemokine that attracts immature dendritic cells and memory T lymphocytes, both expressing CCR6. Depending on the cell type, this chemokine was found to be inducible by cytokines (IL-1beta) and by bacterial, viral, or plant products (including LPS, dsRNA, and PMA) as measured by a specific ELISA. Although coinduced with monocyte chemotactic protein-1 (MCP-1) and IL-8 by dsRNA, measles virus, and IL-1beta in diploid fibroblasts, leukocytes produced LARC/MIP-3alpha only in response to LPS. However, in myelomonocytic THP-1 cells LARC/MIP-3alpha was better induced by phorbol ester, whereas in HEp-2 epidermal carcinoma cells IL-1beta was the superior inducer. The production levels of LARC/MIP-3alpha (1-10 ng/ml) were, on the average, 10- to 100-fold lower than those of IL-8 and MCP-1, but were comparable to those of other less abundantly secreted chemokines. Natural LARC/MIP-3alpha protein isolated from stimulated leukocytes or tumor cell lines showed molecular diversity, in that NH(2)- and COOH-terminally truncated forms were purified and identified by amino acid sequence analysis and mass spectrometry. In contrast to other chemokines, including MCP-1 and IL-8, the natural processing did not affect the calcium-mobilizing capacity of LARC/MIP-3alpha through its receptor CCR6. Furthermore, truncated natural LARC/MIP-3alpha isoforms were equally chemotactic for lymphocytes as intact rLARC/MIP-3alpha. It is concluded that in addition to its role in homeostatic trafficking of leukocytes, LARC/MIP-3alpha can function as an inflammatory chemokine during host defense.  相似文献   

7.
In Alzheimer's disease (AD) one finds increased deposition of A beta and also an increased presence of monocytes/macrophages in the vessel wall and activated microglial cells in the brain. AD patients show increased levels of proinflammatory cytokines by activated microglia. Here we used a human monocytic THP-1 cell line as a model for microglia to delineate the cellular signaling mechanism involved in amyloid peptides (A beta(1-40) and A beta(1-42))-induced expression of inflammatory cytokines and chemokines. We observed that A beta peptides at physiological concentrations (125 nM) increased mRNA expression of cytokines (TNF-alpha, and IL-1 beta) and chemokines (monocyte chemoattractant protein-1 (MCP-1), IL-8, and macrophage inflammatory protein-1 beta (MIP-1 beta)). The cellular signaling involved activation of c-Raf, extracellular signal-regulated kinase-1 (ERK-1)/ERK-2, and c-Jun N-terminal kinase, but not p38 mitogen-activated protein kinase. This is further supported by the data showing that A beta causes phosphorylation of ERK-1/ERK-2, which, in turn, activates Elk-1. Furthermore, A beta mediated a time-dependent increase in DNA binding activity of early growth response-1 (Egr-1) and AP-1, but not of NF-kappa B and CREB. Moreover, A beta-induced Egr-1 DNA binding activity was reduced >60% in THP-1 cells transfected with small interfering RNA duplexes for Egr-1 mRNA. We show that A beta-induced expression of TNF-alpha, IL-1 beta, MCP-1, IL-8, and MIP-1 beta was abrogated in Egr-1 small inhibitory RNA-transfected cells. Our results indicate that A beta-induced expression of cytokines (TNF-alpha and IL-1 beta) and chemokines (MCP-1, IL-8, and MIP-1 beta) in THP-1 monocytes involves activation of ERK-1/ERK-2 and downstream activation of Egr-1. The inhibition of Egr-1 by Egr-1 small inhibitory RNA may represent a potential therapeutic target to ameliorate the inflammation and progression of AD.  相似文献   

8.
Uropathogenic Escherichia coli (UPEC) is the most common etiological cause of urogenital tract infections and represents a considerable cause of immunological male infertility. We examined TLR 1-11 expression profiles in testicular cells and the functional response to infection with UPEC. All testicular cell types expressed mRNAs for at least two TLRs and, in particular, synthesis of TLR4 was induced in testicular macrophages (TM), Sertoli cells (SC), peritubular cells (PTC), and peritoneal macrophages (PM) after UPEC exposure. Even though MyD88-dependent pathways were activated as exemplified by phosphorylation of mitogen-activated protein kinases in TM, SC, PTC, and PM and by the degradation of IkappaBalpha and the nuclear translocation of NF-kappaB in PTC and PM, treatment with UPEC did not result in secretion of the proinflammatory cytokines IL-1alpha, IL-6, and TNF-alpha in any of the investigated cells. Moreover, stimulated production of these cytokines by nonpathogenic commensal E. coli or LPS in PM was completely abolished after coincubation with UPEC. Instead, in SC, PTC, TM, and PM, UPEC exposure resulted in activation of MyD88-independent signaling as documented by nuclear transfer of IFN-related factor-3 and elevated expression of type I IFNs alpha and beta, IFN-gamma-inducible protein 10, MCP-1, and RANTES. We conclude that in this in vitro model UPEC can actively suppress MyD88-dependent signaling at different levels to prevent proinflammatory cytokine secretion by testicular cells. Thus, testicular innate immune defense is shifted to an antiviral-like MyD88-independent response.  相似文献   

9.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

10.
Inflammatory processes are known to be involved at least in the early phase of complex regional pain syndrome type 1 (CRPS1). Blister fluid obtained from the involved extremities displayed increased amounts of proinflammatory cytokines IL-6 and TNFalpha compared with the noninvolved extremities. The aim of this paper is to investigate the involvement of mediators by measurement of several other cytokines using new detection techniques that enable multiple cytokine measurement in small samples. The use of a multiplex-25 bead array cytokine assay and Luminex technology enabled simultaneous measurement of representative (1) proinflammatory cytokines such as GM-CSF, IL-1beta, IL-1RA, IL-6, IL-8, and TNF-alpha; (2) Th1/Th2 distinguishing cytokines IFN-gamma, IL-2, IL-2R, IL-4, IL-5, and IL-10; (3) nonspecific acting cytokines IFN-alpha, IL-7, IL-12p40/p70, IL-13, IL-15, and IL-17; and (4) chemokines eotaxin, IP-10, MCP-1, MIP-1alpha, MIP-1beta, MIG, and RANTES. Although minimal detection levels are significantly higher in the bead array system than those in common ELISA assays, in blister fluid, IL-1RA, IL-6, IL-8, TNF-alpha, IL-12p40/p70, MCP-1, and MIP-1beta were detectable and increased in CRPS1 affected extremities. Levels of IL-6 and TNF-alpha simultaneously measured by ELISA (Sanquin Compact kit) and by multiplex-25 bead array assay (Biosource) were highly correlated (r = 0.85, P < .001 for IL-6 and r = 0.88, P < .001 for TNF-alpha). Furthermore, IP-10 and eotaxin were detectable but diminished in CRPS1, whereas detectable amounts of IL-10 were similar in involved and noninvolved extremities. Multiplex bead array assays are useful systems to establish the involvement of cytokines in inflammatory processes by measurements in blister fluids of CRPS1. Ten representative cytokines were detectable. However, detection levels and amounts measured are at least 3 times higher in the multiplex-25 array assay than in the ELISA assays used simultaneously for the measurement of cytokines.  相似文献   

11.
Activated macrophages produce a number of proinflammatory cytokines including IL-6, JE, MIP-1 alpha and MIP-1 beta. The induction requirements for production of either IL-6 or the MIP-1 related inflammatory proteins (MIP-1 alpha, MIP-1 beta, and JE) have been analyzed independently using fibroblasts, monocytes, or endothelial cells. However, little is known about the regulation of these cytokines in macrophages. Since activated macrophages produce prostaglandins (PGE2) which may participate in the autoregulation of cytokine production by stimulation of adenylate cyclase and the induction of cAMP-dependent signal pathways, we determined the effects of PGE on the production of IL-6 and MIP-1-related proteins. Murine macrophage cell lines were incubated with PGE1, PGE2, cholera toxin, or dibutyryl cAMP in the presence of absence suboptimal doses of LPS. Pharmacologic agents alone did not induce IL-6 production but incubation of macrophages with combinations of adenylate cyclase stimulators and LPS or dcAMP and LPS led to the dose-dependent enhancement of IL-6 secretion and mRNA expression. In contrast, PGE1 inhibits LPS-induced JE, MIP-1 alpha, and MIP-1 beta mRNA expression and this inhibition is partially dependent on a cAMP-mediated pathway of signal transduction. In previous work we demonstrated that IFN-gamma and PMA do not stimulate the production of IL-6 by macrophages. Here we show that incubation of macrophages with either IFN-gamma or PMA induces the expression of JE, MIP-1 alpha and MIP-1 beta mRNA expression. JE mRNA expression is much more responsive to the stimulatory effects of IFN-gamma than are the MIP-1 genes. Finally, PGE inhibits PMA and IFN-gamma-induced JE and MIP-1-related mRNA expression.  相似文献   

12.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

13.
BACKGROUND: Aside from numerous parenchymal and vascular deposits of amyloid beta (A beta) peptide, neurofibrillary tangles, and neuronal and synaptic loss, the neuropathology of Alzheimer's disease is accompanied by a subtle and chronic inflammatory reaction that manifests itself as microglial activation. However, in Alzheimer's disease, alterations in the permeability of the blood-brain barrier and chemotaxis, in part mediated by chemokines and cytokines, may permit the recruitment and transendothelial passage of peripheral cells into the brain parenchyma. MATERIALS AND METHODS: Human monocytes from different donors were tested for their capacity to differentiate into macrophages and their ability to secrete cytokines and chemokines in the presence of A beta 1-42. A paradigm of the blood-brain barrier was constructed utilizing human brain endothelial and astroglial cells with the anatomical and physiological characteristics observed in vivo. This model was used to test the ability of monocytes/macrophages to transmigrate when challenged by A beta 1-42 on the brain side of the blood-brain barrier model. RESULTS: In cultures of peripheral monocytes, A beta 1-42 induced the secretion of proinflammatory cytokines TNF-alpha, IL-6, IL-1 beta, and IL-12, as well as CC chemokines MCP-1, MIP-1 alpha, and MIP-1 beta, and CXC chemokine IL-8 in a dose-related fashion. In the blood-brain barrier model, A beta 1-42 and monocytes on the brain side potentiated monocyte transmigration from the blood side to the brain side. A beta 1-42 stimulated differentiation of monocytes into adherent macrophages in a dose-related fashion. The magnitude of these proinflammatory effects of A beta 1-42 varied dramatically with monocytes from different donors. CONCLUSION: In some individuals, circulating monocytes/macrophages, when recruited by chemokines produced by activated microglia and macrophages, could add to the inflammatory destruction of the brain in Alzheimer's disease.  相似文献   

14.
15.
We report that the addition of human macrophage inflammatory protein-3 beta (MIP-3 beta) to cultures of human PBMCs that have been activated with LPS or PHA results in a significant enhancement of IL-10 production. This effect was concentration-dependent, with optimal MIP-3 beta concentrations inducing more than a 5-fold induction of IL-10 from LPS-stimulated PBMCs and a 2- to 3-fold induction of IL-10 from PHA-stimulated PBMCs. In contrast, no significant effect on IL-10 production was observed when 6Ckine, the other reported ligand for human CCR7, or other CC chemokines such as monocyte chemoattractant protein-1, RANTES, MIP-1 alpha, and MIP-1 beta were added to LPS- or PHA-stimulated PBMCs. Similar results were observed using activated purified human peripheral blood monocytes or T cells. Addition of MIP-3 beta to nonactivated PBMCs had no effect on cytokine production. Enhancement of IL-10 production by MIP-3beta correlated with the inhibition of IL-12 p40 and TNF-alpha production by monocytes and with the impairment of IFN-gamma production by T cells, which was reversed by addition of anti-IL-10 Abs to the cultures. The ability of MIP-3 beta to augment IL-10 production correlated with CCR7 mRNA expression and stimulation of intracellular calcium mobilization in both monocytes and T cells. These data indicate that MIP-3 beta acts directly on human monocytes and T cells and suggest that this chemokine is unique among ligands binding to CC receptors due to its ability to modulate inflammatory activity via the enhanced production of the anti-inflammatory cytokine IL-10.  相似文献   

16.
We have investigated gene and protein expression of ST2/ST2L in a murine alveolar macrophage (AM) cell line, MH-S, reacting to inflammatory stimuli in vitro and in the lung tissue of an acute lung injury model in vivo. We have also analyzed the effect of soluble ST2 protein on inflammatory response of MH-S cells. Lipopolysaccharide (LPS) and proinflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha induced ST2 mRNA expression in MH-S cells. In an acute lung injury model, protein and mRNA expression levels of ST2 increased to the maximal level at 24-72h after the LPS challenge. Furthermore, pretreatment with ST2 protein significantly reduced the protein production and gene expression of IL-1alpha, IL-6, and TNF-alpha in LPS-stimulated MH-S cells in vitro. These results suggest that increases in endogenous ST2 protein in AM, which is induced by inflammatory stimuli, such as LPS and proinflammatory cytokines, may modulate acute lung inflammation.  相似文献   

17.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

18.
To determine the role of CD14 in lipopolysaccharide (LPS)-induced release of chemokines, 16 humans were injected with LPS (4 ng/kg) preceded (-2 h) by intravenous IC14, an anti-human CD14 monoclonal antibody, or placebo. LPS elicited increases in interleukin (IL)-8 concentrations in plasma and in lysates of red blood cell (RBC), polymorphonuclear cell and mononuclear cell fractions, which were all reduced by IC14. LPS also induced rises in the plasma and RBC levels of monocyte chemoattractant protein (MCP)-1, which were diminished by IC14. Macrophage inflammatory protein (MIP)-1alpha and MIP-1beta, chemokines that in contrast to IL-8 and MCP-1 can not bind to the Duffy antigen receptor for chemokines on RBCs, were only detected in plasma. IC14 attenuated the LPS-induced release of MIP-1beta, but not of MIP-1alpha. IL-8 and MCP-1, but not MIP-1alpha and MIP-1b, circulate in RBC-associated form during endotoxemia. LPS-induced chemokine release is, in part, mediated by an interaction with CD14.  相似文献   

19.
20.
Injection of anti-type II collagen Ab and LPS induces arthritis in mice. The levels of IL-1 beta, IL-6, and chemokines (macrophage inflammatory protein (MIP)-1 alpha, MIP-2, and monocyte chemoattractant protein-1) in the hind paws increased with the onset of arthritis and correlated highly with arthritis scores. The level of TNF-alpha was also elevated, but only transiently. Quantitative real-time PCR analysis revealed increases in cytokine and chemokine mRNA. To elucidate the contribution of inflammatory cytokines and chemokines in arthritis development more directly, recombinant proteins, neutralizing Abs, and knockout mice were used. The injection of rIL-1 beta or TNF-alpha, but not IL-6 or chemokines, induced arthritis when mice were i.v. preinjected with anti-type II collagen Ab. However, a single injection of recombinant cytokines or chemokines into the hind paws did not induce swelling. Arthritis development was inhibited by neutralizing Ab against IL-1 beta, TNF-alpha, or MIP-1 alpha. In contrast, the inhibitory effect by anti-MIP-2 Ab was partial and, surprisingly, Abs to IL-6 and monocyte chemoattractant protein-1 showed no inhibitory effect. Furthermore, arthritis development in IL-1R(-/-) mice and TNFR(-/-) mice was not observed at all, but severe arthritis was developed in IL-6(-/-) mice. These results suggest that IL-1 beta and TNF-alpha play more crucial roles than IL-6 or chemokines in this model. Because arthritis was also developed in SCID mice, the development of arthritis in the Ab-induced mice model is due to a mechanism that does not involve T or B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号