首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of some animal taxa (e.g., nematodes, rotifers, and tardigrades) to enter an ametabolic (cryptobiotic) state is well known. Nevertheless, the phenotypic factors affecting successful anhydrobiosis have rarely been investigated. We report a laboratory study on the effects of body size, reproductive condition, and energetic condition on anhydrobiotic survival in a population of the eutardigrade Richtersius coronifer. Body size and energetic condition interacted in affecting the probability of survival, while reproductive condition had no effect. Large tardigrades had a lower probability of survival than medium-sized tardigrades and showed a positive response in survival to energetic condition. This suggests that energy constrained the possibility for large tardigrades to enter and to leave anhydrobiosis. As a possible alternative explanation for low survival in the largest specimens we discuss the expression of senescence. In line with the view that processes related to anhydrobiosis are connected with energetic costs we documented a decrease in the size of storage cells over a period of anhydrobiosis, showing for the first time that energy is consumed in the process of anhydrobiosis in tardigrades.  相似文献   

2.
Abstract. Here we report the effect of food concentration on the recovery from anhydrobiosis of a bdelloid rotifer, Macrotrachela quadricornifera . Cohorts were either starved, or fed high or low concentrations of food, before being dried and their subsequent recovery rates determined. The rotifers starved for 3 d before anhydrobiosis recovered in significantly higher proportion, and those fed lower food concentration recovered better than those fed higher food concentration. In addition, starvation did not decrease the recovery of other bdelloid species ( Philodina roseola and Adineta sp. 1) which were either fed or starved before anhydrobiosis. These results suggest that a successful recovery from anhydrobiosis is not dependent on prior resource level supplied to the bdelloids. However, the lack of resources might not be the only factor in a successful recovery from anhydrobiosis. Observations using scanning electron microscopy of fed individuals of M. quadricornifera entering anhydrobiosis showed that some food remained in the digestive tract. Thus, we propose that the negative effect of rich food may be due to a purely mechanical effect and may be interfering with a proper folding of the rotifer body at the onset of anhydrobiosis. This contribution results from studies carried out in preparation for biological experiments scheduled on the International Space Station (ISS).  相似文献   

3.
Living in harsh and variable environments that are prone to periodic desiccation, tardigrades exhibit remarkable tolerance against physical extremes through a state known as anhydrobiosis. To study the effect of this state on the longevity and hence the lifecycle in the taxon Tardigrada for the first time, we exposed a tardigrade species, Milnesium tardigradum , to alternating periods of drying and active feeding periods in a hydrated state. Compared with a hydrated control, the periodically dried animals showed a similar longevity, indicating that the time spent in anhydrobiosis was ignored by the internal clock. Thus, desiccation can produce a time shift in the age of tardigrades similar to the model described for rotifers that has been termed 'Sleeping Beauty'.  相似文献   

4.
To withstand desiccation, many invertebrates such as rotifers, nematodes and tardigrades enter a state known as anhydrobiosis, which is thought to require accumulation of compatible osmolytes, such as the non-reducing disaccharide trehalose to protect against dehydration damage. The trehalose levels of eight tardigrade species comprising Heterotardigrada and Eutardigrada were observed in five different states of hydration and dehydration. Although many species accumulate trehalose during dehydration, the data revealed significant differences between the species. Although trehalose accumulation was found in species of the order Parachela (Eutardigrada), it was not possible to detect any trehalose in the species Milnesium tardigradum and no change in the trehalose level has been observed in any species of Heterotardigrada so far investigated. These results expand our current understanding of anhydrobiosis in tardigrades and, for the first time, demonstrate the accumulation of trehalose in developing tardigrade embryos, which have been shown to have a high level of desiccation tolerance.  相似文献   

5.
6.
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors.  相似文献   

7.
A seasonal survey of the distribution of terrestrial tardigrades on Dugger Mountain, Alabama, was conducted during the time period from April 1997 through April 1998. Cryptogams from five trees (Quercus alba), three on north-facing slopes and two on south-facing slopes, were sampled seasonally at three stations (645 m, 410 m, 183 m) along an unnamed tributary of the South Fork of Terrapin Creek. Trees were chosen based on their location outside the riparian zone. Tardigrades were extracted from the samples, mounted individually in Hoyer's medium, and identified to species with phase microscopy. Seasonal and altitudinal variations in the distribution of the populations on the north- and south-facing slopes were determined. Present on Dugger Mountain were tardigrades belonging to 12 species (Macrobiotus cf. areolatus/tonollii, Macrobiotus cf. echinogenitus, Macrobiotus islandicus, Macrobiotus richtersi, Minibiotus intermedius, Milnesium tardigradum, Diphascon pingue, Hypsibius pallidus, Echiniscus cf. arctomys, Echiniscus virginicus, Pseudechiniscus ramazzottii, and Pseudechiniscus suillus). Due to the small numbers of individuals of each species, the total numbers of tardigrades of all species were pooled. There were no significant differences in the mean number of species or the mean number of all tardigrades per sample at each station (altitude). However, seasonal differences in both abundance and number of species were detected in pooled samples due to the high numbers collected in spring 1997.  相似文献   

8.
In seven species of lungless salamanders, family Plethodontidae, ranging from medium to very small in body size and from small to very large in cell size, the morphology of the eye and the retina were investigated. Haller's rule was only partially corroborated. While the smallest species had the relatively largest eyes, the largest two species, having the largest cells, showed the third and fourth largest eyes of the series. An effect of cell size was also found with regard to eye morphology. Small species with small cells as well as large species with large cells had relatively small retinae and relatively large lenses. In contrast, small eyes with relatively large cells had absolutely and relatively large retinae and relatively small lenses. The retinae of all investigated plethodontids showed a morphology typical for land vertebrates with two fiber and three nuclear layers. Rods, cones and double cones could clearly be distinguished. A fovea or area centralis was not found. Retina ganglion cell and photoreceptor counts show that the number of these elements was lower than in salamandrids. However, determination of the resolution power of miniaturized eyes based on morphological and behavioral data shows that this does not seem to constitute a functional disadvantage. The morphological and functional properties and constraints of eyes of miniaturized salamanders are discussed.  相似文献   

9.
Cornette R  Kikawada T 《IUBMB life》2011,63(6):419-429
An African chironomid, Polypedilum vanderplanki, is the only insect known to be capable of extreme desiccation tolerance, or anhydrobiosis. In the 1950s and 1960s, Hinton strenuously studied anhydrobiosis in this insect from a physiological standpoint; however, nobody has afterward investigated the phenomenon. In 2000, research on mechanisms underlying anhydrobiosis was resumed due to successful establishment of a rearing system for P. vanderplanki. This review is focused on the latest findings on the physiological and molecular mechanisms underlying the induction of anhydrobiosis in P. vanderplanki. Early experiments demonstrated that the induction of anhydrobiosis was possible in isolated tissues and independent from the control of central nervous system. However, to achieve successful anhydrobiosis, larvae need a slow regime of desiccation, allowing them to synthesize molecules, which will protect cells and tissues against the deleterious effects of dehydration. Trehalose, a nonreducing disaccharide, which accumulates in P. vanderplanki larvae up to 20% of the dry body mass, is thought to replace the water in its tissues. Similarly, highly hydrophilic proteins called the late embryogenesis abundant (LEA) proteins are expressed in huge quantities and act as a molecular shield to protect biological molecules against aggregation and denaturation. This function is shared by heat shock proteins, which are also upregulated during the desiccation process. At the same time, desiccating larvae express various antioxidant molecules and enzymes, to cope with the massive oxidative stress, which is responsible for general damage to membranes, proteins, and DNA in dehydrating cells. Finally, specific water channels, called aquaporins, accelerate dehydration, and trehalose together with LEA proteins forms a glassy matrix, which protects the biological molecules and the structural integrity of larvae in the anhydrobiotic state.  相似文献   

10.
In nature, almost all animals have to cope with periods of food shortage during their lifetimes. Starvation risks are especially high for carnivorous predatory species, which often experience long intervals between stochastic prey capturing events. A laboratory experiment using the common predatory carabid beetle Anchomenus dorsalis revealed an exceptional level of starvation resistance in this species: males survived up to 137 days and females up to 218 days without food at 20°C. Individual starvation resistance was strongly positively affected by pre-starvation body mass but only slightly by beetle structural body size per se. Females outperformed males even when the effect of gender was corrected for the effects of structural body size and pre-starvation body mass. The better performance of females compared to males and of beetles with higher relative pre-starvation body mass could be linked to higher fat content and lean dry mass before starvation, followed by a greater decrease in both during starvation. There was also a difference between the sexes in the extent of body mass changes both during ad libitum feeding and following starvation; the body masses of females fluctuated more compared to males. This study stresses the need to distinguish between body mass and structural body size when investigating the ecological and evolutionary consequences of body size. Investigation of the net effects of body size and sex is necessary to disentangle the causes of differences in individual performances in studies of species with significant sexual size dimorphism.  相似文献   

11.
In order to recover without any apparent damage, tardigrades have evolved effective adaptations to preserve the integrity of cells and tissues in the anhydrobiotic state. Despite those adaptations and the fact that the process of biological ageing comes to a stop during anhydrobiosis, the time animals can persist in this state is limited; after exceedingly long anhydrobiotic periods tardigrades fail to recover. Using the single cell gel electrophoresis (comet assay) technique to study the effect of anhydrobiosis on the integrity of deoxyribonucleic acid, we showed that the DNA in storage cells of the tardigrade Milnesium tardigradum was well protected during transition from the active into the anhydrobiotic state. Specimens of M. tardigradum that had been desiccated for two days had only accumulated minor DNA damage (2.09 ± 1.98% DNA in tail, compared to 0.44 ± 0.74% DNA in tail for the negative control with active, hydrated animals). Yet the longer the anhydrobiotic phase lasted, the more damage was inflicted on the DNA. After six weeks in anhydrobiosis, 13.63 ± 6.41% of DNA was found in the comet tail. After ten months, 23.66 ± 7.56% of DNA was detected in the comet tail. The cause for this deterioration is unknown, but oxidative processes mediated by reactive oxygen species are a possible explanation.  相似文献   

12.
Tardigrades were sampled from diverse biotypes and classified according to four xeric variables to assess susceptibility to desiccation: exposure to insolation, elevation, and standardized desiccation rate and hydration capacity of the habitat plant. Fifteen tardigrade species were recorded including Hypsibius cataphractus Maucci, a new addition to the British fauna.
Xeric associations with seven tardigrade species were analysed by multiple regression, using incidence and population density as independent abundance estimates. Species show considerable variation in ecotype. The hygrophilic Macrobiotus hufelandi and Hypsibius dujar dini are excluded from rapidly desiccating habitats. Xerophiles, Milnesium tardigradum and H. oberhaeuseri , do not favour high insolation or high desiccation rate but apparently shun poorly drained sites and/ or prolonged hydration. Significant interspecific associations are identified between Milnesium tardigradum and two Hypsibius species which it may exploit for food. Negative associations between three other species— M. hufelandi, M. richtersi and H. prosostomus —suggest competitive exclusion.
The interstitial meiofauna of a dehydrating moss cushion migrates vertically to the proximal C-zone, although this behaviour is not observed in Echiniscus testudo; implications of this for the species' ecotype are discussed.  相似文献   

13.
The midsagittal area and other morphological measures were taken on the corpus callosum of four different species of primate: Macaca mulatta, M. fascicularis, Callithrix jacchus, and Saguinus oedipus. The first two species are strongly dimorphic, whereas the New World forms show little dimorphism with regard to overall body size, canines, and brain weight. Neither total corpus callosal area (TOTALCC), or other parts of the corpus callosum (CC) showed any significant sexual dimorphism in any of the primate species sampled. Only in M. mulatta did a sexual dimorphism appear to be significant. In males of this species, the dorsoventral width of the splenium was larger than in females. In addition, the anterior commissure (ANTCOMM) evinced no sexual dimorphism in the different species. Brain weight was significantly dimorphic in only M. mulatta, and when ratio data were used to correct for brain weight, no significant differences were found in the corpus callosum. This is in contrast to Homo sapiens, where the relative size of the CC has been reported to be larger in females, and particularly so in the posterior, or splenial portion of the CC. Correlation coefficients were calculated for the various variables within each species. In general, most of the callosal measures are significantly inter-correlated, although the exact pattern varies for each species. Thus, unlike Homo sapiens, or pongids such as Gorilla and Pan, neither New nor Old World monkeys show any striking evidence for sexual dimorphism in the corpus callosum.  相似文献   

14.
1. Carbonic anhydrase activity and 2,3-diphosphoglycerate (2,3-DPG) concentration were determined in whole blood from humans (Homo sapiens), rabbits (Oryctolagus cuniculus), eastern grey kangaroos (Macropus giganteus), pademelons (Thylogale billardierii) and brush-tailed possums (Trichosurus vulpecula). 2. Marsupial blood carbonic anhydrase activity increased as species body size decreased. 3. T. billardierii haemoglobin was found to have a polymorphism which may be the same (beta 2 = histidine or glutamine) as that of M. giganteus. 4. The concentration of 2,3-DPG int e red cells of T. billardierii was approximately equal to that of the haemoglobin tetramer. Levels of 2,3-DPG in the other species were similar to those previously reported.  相似文献   

15.
本文采用连续施用和轮换施用农药方式对福建烟区烟蚜进行抗药性及其体内酶变化的测定,研究结果表明,在连续施用3次、5次、7次和9次后,施用灭多威后的烟蚜抗性分别增长了1.397倍、2.608倍、4.891倍和7.598倍;施用吡虫啉则分别增长了1.717倍、2.114倍、2.861倍和4.169倍;施用高效氯氟氰菊酯则分别...  相似文献   

16.
Following a study on the changes occurring in a bdelloid species (Macrotrachela quadricornifera, Rotifera, Bdelloidea) when entering anhydrobiosis, we investigated the changes in morphology, including weight and volume during the transition from the active hydrated to the dormant anhydrobiotic state by scanning electron microscopy, confocal microscopy and light microscopy. We compared sizes and morphologies of hydrated extended, hydrated contracted and anhydrobiotic specimens. Bdelloid musculature is defined: longitudinal muscles are contracted in the hydrated contracted animal (head and foot are retracted inside the trunk), but appear loose in the anhydrobiotic animal. When anhydrobiotic, M. quadricornifera appears much smaller in size, with a volume reduction of about 60% of the hydrated volume, and its internal organization undergoes remarkable modifications. Internal body cavities, clearly distinguishable in the hydrated extended and contracted specimens, are no longer visible in the anhydrobiotic specimen. Concomitantly, M. quadricornifera loses more than 95% of its weight when anhydrobiotic; this is more than expected from the volume reduction data and could indicate the presence of space-filling molecular species in the dehydrated animal. We estimate that the majority of body mass loss and volume reduction can be ascribed to the water loss from the body cavity during desiccation.  相似文献   

17.

Larvae of the African midge Polypedilum vanderplanki show extreme desiccation tolerance, known as anhydrobiosis. Recently, the cultured cell line Pv11 was derived from this species; Pv11 cells can be preserved in the dry state for over 6 months and retain their proliferation potential. Here, we attempted to expand the use of Pv11 cells as a model to investigate the mechanisms underlying anhydrobiosis in P. vanderplanki. A newly developed vector comprising a constitutive promoter for the PvGapdh gene allowed the expression of exogenous proteins in Pv11 cells. Using this vector, a stable Pv11 cell line expressing green fluorescence protein (GFP) was established and retained desiccation tolerance. Gene silencing with GFP-specific siRNAs significantly suppressed GFP expression to approximately 7.5–34.6% of that in the non-siRNA-transfected GFP stable line. Establishment of these functional assays will enable Pv11 cells to be utilized as an effective tool to investigate the molecular mechanisms underlying anhydrobiosis.

  相似文献   

18.
Changes in culturability and outer membrane protein profiles were investigated in Pseudomonas fluorescens DF57 and Pseudomonas putida DF14 during starvation for carbon, nitrogen, and phosphorus. P. fluorescens DF57 remained fully culturable for 4 days in all starvation regimes. The cell mass increased during starvation for nitrogen and phosphorus, indicating the accumulation of storage compounds, whereas it decreased slightly in carbon-starved cells. P. putida DF14 lost culturability during phosphorus starvation, and the mass of phosphate-starved cells did not increase. Analysis of additional P. fluorescens and P. putida strains, however, showed that the ability to preserve culturability during phosphorus starvation was not species but strain dependent. In DF57, an outer membrane protein of 55 kDa appeared during starvation for phosphorus, while another protein of 63 kDa was seen during all starvation conditions. DF14 induced two outer membrane proteins of 28 and 29 kDa during starvation for carbon and nitrogen, but no phosphorus-specific starvation protein could be detected. Therefore, starvation-induced outer membrane proteins do not seem to be conserved among the fluorescent pseudomonads and a unique starvation response might be found in individual strains.  相似文献   

19.
The architecture of the musculature of the eutardigrade species Milnesium tardigradum Doyère, 1840, Hypsibius sp. and Ramazzottius oberhaeuseri (Doyère in Ann Sci Nat Zool Sér 2(14):269–369, 1840) is investigated by phalloidin staining and confocal laser scanning microscopy. There are methodological problems in staining eutardigrades due to physiological alterations under stress (anhydrobiosis) and due to penetration problems of the cuticle. It is helpful to fix specimens in the state of asphyxy, where animals are stretched following an oxygen shortage in their environment. The musculatures of all three species correspond in their general architecture, but differ in detail, such as in the number of muscles. All muscles are isolated muscle strands. There are on each body side two dorsal and one ventral muscle strands, in addition to a system of dorsoventral, lateral and lateroventral muscles. Seven median ventral attachment points give rise to dorsoventral, ventrolateral and appendage muscles. The appendages receive several muscles originating dorsally and ventrally. The number of muscles and the arrangement differ in each appendage. The fourth appendage shows the greatest differences with a far smaller number of muscles compared to other species. The musculature shows comparably few strict segmental patterns, for example, the musculature of each appendage differs from the other ones. By comparison with literature data on the same species and data of Macrobiotus hufelandi it can be shown that eutardigrades have a roughly comparable muscular architecture, but that there are several differences in detail. Dedicated to Professor Westheide on the occasion of his 70th birthday.  相似文献   

20.
In insects, trophocytes (adipocytes) are major cells of a storage organ, the fat body, from which stored glycogen and lipids are mobilized under starvation. However, cockroaches have 2 additional types of cell in the fat body: mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, and urocytes depositing uric acid in urate vacuoles. These cells have not been investigated in terms of their roles under starvation conditions. To gain insight into the roles of trophocytes, mycetocytes and urocytes in cockroaches, structural changes were first investigated in the cells associated with starvation in the American cockroach, Periplaneta americana, by light and electron microscopy. The area of lipid droplets in trophocytes, the endosymbiont population and mitotic activity in mycetocytes, and the area of urate vacuoles in urocytes were analyzed in association with survival rates of the starved cockroaches. After 2 weeks of starvation, trophocytes lost glycogen rosettes and their area of lipid droplets decreased, but almost all cockroaches survived this period. However, further starvation did not reduce the area, but the survival rates dropped rapidly and all cockroaches died in 7 weeks. Endosymbionts were not affected in terms of population size and mitotic activity, even if the cockroaches were dying. The area of urate vacuoles rapidly decreased in a week of starvation and did not recover upon further starvation. These results indicate that starved cockroaches mobilize glycogen and lipids stored in trophocytes to survive for 2 weeks and then die after the exhaustion of nutrients in these cells. Endosymbionts are not digested for the recycling of nutrients, but uric acid is reused under starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号