首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The number of sperm incorporated into eggs made polyspermic with varying concentrations of nicotine (0.025–0.25%, v/v) appears to be directly related to the concentrations employed. The cortical response is morphologically equivalent to that observed in control preparations. Shortly after their incorporation all of the spermatozoa undergo structural events normally associated with the development of the male pronucleus in monospermic eggs. During the reorganization of the spermatozoa, sperm asters are formed. The number of male pronuclei that initially migrate to and encounter the female pronucleus is usually one to three. When pronuclei come into proximity to one another the surface of the female pronucleus proximal to the advancing male pronuclei flattens and becomes highly convoluted. Subsequently, the pronuclei contact each other and the outer and inner membranes of the pronuclear envelopes fuse, thereby producing the zygote nucleus. The male pronuclei remaining in the zygote after this initial series of pronuclear fusions continue to differentiate, i.e. they enlarge, form nucleolus-like bodies, and undergo further chromatin dispersion. In approximately 90% of the zygotes, all of the remaining male pronuclei progressively migrate to the zygote nucleus and fuse to form one large nucleus by 80 min postinsemination. Mitosis and cleavage of the polyspermic zygote occurs later than in monospermic eggs.  相似文献   

2.
To prevent duplicate DNA synthesis, metazoan replication origins are licensed during G1. Only licensed origins can initiate replication, and the cytoplasm interacts with the nucleus to inhibit new licensing during S phase. DNA replication in the mammalian one‐cell embryo is unique because it occurs in two separate pronuclei within the same cytoplasm. Here, we first tested how long after activation the oocyte can continue to support licensing. Because sperm chromatin is licensed de novo after fertilization, the timing of sperm injection can be used to assay licensing initiation. To experimentally skip some of the steps of sperm decondensation, we injected mouse sperm halos into parthenogenetically activated oocytes. We found that de novo licensing was possible for up to 3 h after oocyte activation, and as early as 4 h before DNA replication began. We also found that the oocyte cytoplasm could support asynchronous initiation of DNA synthesis in the two pronuclei with a difference of at least 2 h. We next tested how tightly the oocyte cytoplasm regulates DNA synthesis by transferring paternal pronuclei from zygotes generated by intracytoplasmic sperm injection (ICSI) into parthenogenetically activated oocytes. The pronuclei from G1 phase zygotes transferred into S phase ooplasm were not induced to prematurely replicate and paternal pronuclei from S phase zygotes transferred into G phase ooplasm continued replication. These data suggest that the one‐cell embryo can be an important model for understanding the regulation of DNA synthesis. J. Cell. Biochem. 107: 214–223, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Embryos of Arbacia punctulata , treated to remove the fertilization membrane and hyaline layer, were mixed with sperm (reinseminated) at 20–30 min (streak stage) and at 70 min (2-cell stage) postinsemination. Sperm, incorporated into embryos reinseminated at the streak stage, metamorphosed into male pronuclei which subsequently migrated to and fused with the zygote nucleus. Although blastomeres were capable of incorporating sperm and forming fertilization cones, less than 10% of the 2-cell stage embryos reinseminated. Sperm, were found entrapped within an amorphous material along the surface of 2-cell stage embryos; many had failed to undergo an acrosome reaction. These results indicate that conditions necessary for incorporation and metamorphosis of sperm nuclei into male pronuclei are present in the embryo after the normal period of fertilization.  相似文献   

4.
The behaviour of sperm from egg penetration until creation of the zygote, the development of the maternal pronucleus, and the two first cleavage divisions were studied by use of fluorescence microscopy. It was found that 4-12 sperm penetrate the egg membranes prior to oviposition. Contrary to previous reports, we found that only 1-7 sperm move from their initial location just beneath the vitelline membrane and into the cytoplasm, where they develop into paternal pronuclei. At the time of oviposition, the oocyte nucleus was usually at the stage of metaphase I, rather than anaphase I as previously reported. At 26+/-2.5 minutes the meiotic process had entered the stage of metaphase II. The paternal and maternal pronuclei formed at 55+/-2.6 minutes, and they fused at 93+/-7.3 minutes. The mitotic division of the zygote was completed at 119+/-6.5 minutes.  相似文献   

5.
Our objective was to examine the developmental fate of sperm nuclei in oocytes fertilized under conditions of meiotic arrest. Therefore zona-free metaphase II oocytes and oocyte fragments (nucleate and anucleate) were fertilized in the presence of colcemid. In anucleate oocyte fragments, normal male pronuclei develop. In contrast, in intact oocytes and nucleate fragments sperm nuclei after initial decondensation undergo secondary condensation. This state is maintained as long as the oocytes are treated with colcemid. When the drug is removed 3 h after insemination, the meiotic spindle(s) is reconstructed, the second polar body(ies) is extruded, and a female pronucleus (or micronuclei) forms. At the same time the sperm nucleus decondenses again and transforms into a male pronucleus. In addition oocytes fertilized in the presence of colcemid could not be refertilized. These observations suggest that oocytes and oocyte fragments fertilized in the presence of colcemid undergo activation despite the failure of pronucleus formation. The inhibitory effect of colcemid on the formation of pronuclei is expressed only in the presence of oocyte chromosomes. We suggest that colcemid stabilizes factors responsible for chromosome condensation that are associated with oocyte chromosomes but not factors (whether the same or different) present in the cytoplasm.  相似文献   

6.
We analyzed progression through the meiotic maturation in oocytes manipulated to replace the prophase oocyte nucleus with the nucleus from a cumulus cell, a pachytene spermatocyte or the pronucleus from a fertilized egg. Removal of the oocyte nucleus led to a significant reduction in histone H1 kinase activity. Replacement of the oocyte nucleus by a pronucleus followed by culture resulted in premature pseudomeiotic division and occasional abnormal cytokinesis; however, histone H1 kinase activity was rescued, microtubules formed a bipolar spindle, and chromosomes were condensed. In addition to the anomalies observed after pronuclear transfer, those after transfer of the nucleus from a cumulus cell or spermatocyte included a dramatically impaired ability to form the bipolar spindle or to condense chromosomes, and histone H1 kinase activity was not rescued. Expression of a cyclin B-YFP in enucleated oocytes receiving the cumulus cell nucleus rescued histone H1 kinase activity, but spindle formation and chromosome condensation remained impaired, indicating a pleiotropic effect of oocyte nucleus removal. However, when the cumulus cell nucleus was first transformed into pronuclei (transfer into a metaphase II oocyte followed by activation), such pronuclei supported maturation after transfer into the oocyte in a manner similar to that of normal pronuclei. These results show that the oocyte nucleus contains specific components required for the control of progression through the meiotic maturation and that some of these components are also present in pronuclei.  相似文献   

7.
The cytoplasmic factor responsible for chromosome condensation was introduced into mouse zygotes at different times after fertilization by fusion of the zygotes with metaphase I oocytes. In 72% of heterokaryons obtained after fusion of early zygotes (14-18 hr post-human chorionic gonadotrophin (HCG) with oocytes, the male and female pronuclei of the zygote decondensed. At the same time, the oocyte chromosomes became enclosed in a nuclear envelope and decondensed to an interphase state. However, in the rest of the heterokaryons, the chromatin of the pronuclei condensed to metaphase chromosomes, thus resulting in three sets of chromosomes. Fusion of zygotes that had begun DNA synthesis (20-22 hr post-HCG) with oocytes induced chromosome condensation of the pronuclei in 76% of the cases. In some heterokaryons, however, the oocyte chromosome decondensed to an interphase state similar to the zygote pronuclei. Fusion between late zygotes (27-29 hr post-HCG) with oocytes resulted in chromosome condensation of the pronuclei in all heterokaryons. On the basis of these results, the formation of the pronuclei and their progression toward mitosis in the zygote may be explained by changing levels of a metaphase factor in the cell, or by a balance between interphase and metaphase factors.  相似文献   

8.
9.
Anti-tubulin immunofluorescence microscopy is used here to demonstrate the configurations of the microtubule-containing structures which participate in the pronuclear movements of sea urchin fertilization. This technique shows that the egg is devoid of microtubules until after the fertilizing sperm is fully incorporated. All the microtubules which appear during the course of fertilization are organized around the base of the sperm head and the sperm aster thus formed behaves in a way that could account for the characteristic motions of the male and female pronuclei as documented by time-lapse video microscopy. Extension of astral microtubules appears to be responsible for the slow (ca. 2.5 μm min?1) movement of the sperm aster into the cytoplasm of the egg; the rapid (ca. 15 μm min?1) migration of the female pronucleus to the sperm aster seems to depend on connection of the female pronucleus to microtubules of the sperm aster. Continued extension of astral microtubules after the pronuclei are brought into conjunction can account for the centripetal motion of the paired (or fused) pronuclei and for the positioning of the zygote nucleus in the center of the egg. The behavior of astral microtubules during these motions suggests that they are capable of transmitting both pushing and pulling forces. All the pronuclear movements, and the assembly of detectable microtubules, are sensitive to the microtubule inhibitors griseofulvin and colchicine. Because of this sensitivity, and since all the observable microtubules within the egg during fertilization arise at the sperm aster, it is concluded that the pronuclear movements of fertilization result from the actions of the sperm aster. The pronuclear movements of sea urchin fertilization represent a simple but striking example of microtubule-mediated motility.  相似文献   

10.
During late stages of spermatogenesis in mammals, most histones bound to DNA are replaced by protamines (PRM), which results in formation of supercondensed and genetically inert sperm chromatin. At fertilization, mature spermatozoon penetrates oocyte and chromatin is remodeled "back" from nucleoprotamine to nucleohistone state. While being crucial for activation of male genome and ultimately for initiation of embryonic development, this process is poorly studied, especially in humans. Data on model animals concerning PRM to histones exchange post fertilization are few and contradictory. As direct experimentation with human embryos is impossible due to ethical, legal and technical reasons, we evaluate the timing and mode of PRM removal in a heterologous ICSI system using hamster ova injected with human sperm. Localization of human PRM 1 and 2 in hybrid zygotes was established using immunofluorescence. We observed a marked zygote to zygote variability in male pronuclei size for any time point post ICSI and demonstrated that PRM removal correlates with the developing pronuclei area rather than time after injection. Overall, the disappearance of protamines from sperm is rather rapid and most likely completed within 1 hr. We propose that the critical characteristic influencing PRM removal after heterologous fertilization is the intrinsic heterogeneity of the human sperm population. The same yet unexplored variance may be one of the reasons for canceled, delayed or aberrant early embryonic development during natural or artificial fertilization in humans.  相似文献   

11.
The early embryogenesis and cell lineage of the pinewood nematode Bursaphelenchus xylophilus was followed from a single-cell zygote to a 46-cell embryo under Nomarski optics, and elongation of the microtubules was studied by immunostaining. As a B. xylophilus oocyte matures, it passes through a passage connecting the oviduct with the quadricolumella, the distal part of the uterus, and reaches the quadricolumella where it stays for a few minutes and is fertilized. After fertilization, the germinal vesicle disappears, an eggshell is formed, and the male and female pronuclei appear. The pronuclei move toward each other and fuse at the center of the egg. Around this time, the microtubule-organizing center appears. The presumptive region of sperm entry into the oocyte becomes the future anterior portion of the embryo. This anterior-posterior axis determination is opposite to that of Caenorhabditis elegans, where the sperm entry site becomes the posterior portion of the embryo. The optimal growth temperatures of these two nematodes also differ in that temperatures of about 30 degrees C afford the fastest growth rate and highest hatching frequency in B. xylophilus. Otherwise, the lineage resembles that of C. elegans with respect to timing, positioning and the axis orientation of each cell division.  相似文献   

12.
Eggs of the sea urchin, Arbacia punctulata, treated with 3% urethane for 30 sec followed by 0.3% urethane and inseminated are polyspermic and fail to undergo a typical cortical reaction. Upon insemination the vitelline layer of urethane-treated eggs either does not separate or is raised only a short distance from the oolemma. 1–6 min after insemination, almost all of the cortical granules remain intact and are dislodged from the plasmalemma. Later (6 min to the two-cell stage) some cortical granules are released randomly along the surface of the zygote. Not all zygotes show the same degree of cortical granule dehiscence; most of them experience little if any granule release whereas others demonstrate considerably more. The thickness of the hyaline layer appears to be directly related to the number of cortical granules released. Subsequent to pronuclear migration, several male pronuclei become associated with the female pronucleus. Later the male and female pronuclear envelopes contact and the outer and the inner laminae fuse, thereby forming the zygote nucleus. The male pronuclei remaining in the cytoplasm increase in size and progressively migrate to, and fuse with, the zygote nucleus. By 60 min some zygotes appear to contain only one large zygote nucleus which subsequently enters mitosis. Other zygotes possess a number of male pronuclei which remain unfused, and later these pronuclei along with the zygote nucleus undergo mitosis. There does not appear to be a direct relation between the number of cortical granules a zygote possesses and the above mentioned dichotomy.  相似文献   

13.
Double nuclear transfer begins with the transfer of nuclear DNA from a donor cell into an enucleated recipient oocyte. This reconstructed oocyte is allowed to develop to the pronuclear stage, where the pronuclei are transferred into an enucleated zygote. This reconstructed zygote is then transferred to a surrogate sow. The genetic integrity of cloned offspring can be compromised by the transmission of mitochondrial DNA from the donor cell, the recipient oocyte and the recipient zygote. We have verified through the use of sequence analysis, restriction fragment length polymorphism analysis, allele specific PCR and primer extension polymorphism analysis that following double nuclear transfer the donor cell mtDNA is eliminated. However, it is likely that the recipient oocyte and zygote mitochondrial DNA are transmitted to the offspring, indicating bimaternal mitochondrial DNA transmission. This pattern of mtDNA inheritance is similar to that observed following cytoplasmic transfer and violates the strict unimaternal inheritance of mitochondrial DNA to offspring. This form of transmission raises concerns regarding the genetic integrity of cloned offspring and their uses in studies that require metabolic analysis or a stable genetic environment where only one variable is under analysis, such as in knockout technology.  相似文献   

14.
The mammalian oocyte is a round cell arrested at prophase I of meiosis. It is characterized by the presence of a large nucleus, called the germinal vesicle, in the middle of which is the nucleolus. Before it can be fertilized, the oocyte must resume meiosis, enter metaphase II and be ovulated. The nucleolus is dissolved during this process. However, the nucleoli of the male and female pronuclei in the zygote are both of maternal origin. A recent paper1 demonstrates that the maternal nucleolus, together with other nucleoplasmic elements, is essential for early embryonic development. These nucleolar and nucleoplasmic factors remain undetermined.  相似文献   

15.
The onset of pronucleus formation and DNA synthesis in porcine oocytes following the injection of porcine or murine sperm was determined in order to obtain insights into species-specific paternal factors that contribute to fertilisation. Similar frequencies of oocytes with female pronuclei were observed after injection with porcine sperm or with murine sperm. In contrast, male pronuclei formed 8-9 h following the injection of porcine sperm, and 6-8 h following the injection of murine sperm. After pronucleus formation maternally derived microtubules were assembled and appeared to move both male and female pronuclei to the oocyte centre. A few porcine oocytes entered metaphase 22 h after the injection of murine sperm, but normal cell division was not observed. The mean time of onset of S-phase in male pronuclei was 9.7 h following porcine sperm injection and 7.4 h following mouse sperm injection. Ultrastructural observation revealed that male pronuclei derived from murine sperm in porcine oocytes are morphologically similar to normal male pronuclei in porcine zygotes. These results suggest that species-specific paternal factors influence the onset of pronucleus formation and DNA synthesis. However, normal nuclear cytoplasmic interactions were observed in porcine S-phase oocytes following murine sperm injection.  相似文献   

16.
The relationship between the timing of both sperm nuclear decondensation and male pronucleus formation in the oocyte and the relative level of disulfide bonds within the sperm nucleus was evaluated. Since reduction of sperm nuclear disulfide (S-S) bonds is a prerequisite for sperm nuclear decondensation in vitro and in vivo, we hypothesized that sperm nuclei with relatively few S-S bonds would require less time to decondense in the oocyte than sperm nuclei with higher numbers of S-S bonds, and that male pronucleus formation would occur more rapidly as well. Four types of hamster sperm nuclei, in which the extent of S-S bonding differed, were microinjected into hamster oocytes, and the time course of sperm nuclear decondensation and male pronucleus formation was charted. Cauda epididymal sperm nuclei, which are rich in S-S bonds, required 45-60 min to decondense. In contrast, nuclei containing few S-S bonds (namely sonication-resistant spermatid nuclei and cauda epididymal sperm nuclei treated in vitro with the S-S bond-reducing agent dithiothreitol) decondensed within 5-10 min of microinjection. Caput epididymal sperm nuclei, with intermediate S-S bond content, decondensed in 10-20 min. Regardless of when decondensation occurred, formation of the male pronucleus never preceded that of the female pronucleus, which occurred 1.25-1.5 h after microinjection. However, sperm nuclei with few S-S bonds were more likely than S-S rich nuclei to transform into male pronuclei in synchrony with the formation of the female pronucleus. We conclude that the timing sperm nuclear decondensation and pronucleus formation depends in part upon the S-S bond content of the sperm nucleus.  相似文献   

17.
This light and transmission electron microscopical study shows that the first polar body is given off before ovulation and that part of its cell membrane and that of the surrounding oocyte have long microvilli at the time of its ejection. Several layers of cumulus cells initially surround the secondary oocyte and first polar body, but the ovulated oocytes in the oviducts in the process of being fertilized do not have cumulus cells around them. Partly expelled second polar bodies occur in the oviduct; they are elongated structures that lack organelles and have electron-dense nuclei. A small fertilization cone appears to form around the sperm tail at the time of sperm entry into the egg and an incorporation cone develops around the sperm head in the egg cytoplasm. In three fertilized eggs a small hole was seen in the zona, which was presumably formed by the spermatozoon during penetration. Cortical granules, present in ovarian oocytes, are not seen in fertilized tubal or uterine eggs; release of their contents probably reduces the chances of polyspermy, although at least one polyspermic fertilized egg was seen and several other fertilized eggs had spermatozoa within the zona pellucida. In the zygote the pronuclei come to lie close together, but there was no evidence of fusion. A "yolk mass," which becomes eccentric before ovulation, is extruded by the time the two-cell embryos are formed, but many vacuoles remain in the non-yolky pole of the egg. A shell membrane of variable thickness is present around all uterine eggs but its origin remains undetermined.  相似文献   

18.
The union between a sperm and an egg nucleus in egg fertilization is necessary to mix genetic materials to create a new diploid genome for the next generation. In most animals, only one sperm is incorporated into the egg (monospermy), but several animals exhibit physiological polyspermy in which several sperms enter the egg during normal fertilization. However, only one sperm nucleus forms the zygote nucleus with the egg nucleus, even in a polyspermic egg. The cellular and molecular mechanisms involved in the selection of sperm nuclei in the egg cytoplasm have been well investigated in urodele amphibians. The principal sperm nucleus develops a larger sperm aster and contacts the egg nucleus to form a zygote nucleus, whereas other accessory sperm nuclei are unable to approach the egg nucleus. The diploid zygote nucleus induces cleavage and participates in embryonic development, whereas the accessory sperm nuclei undergo pyknosis and degenerate. We propose several models to account for the mechanisms of the selection of one sperm nucleus and the degeneration of accessory sperm nuclei. The roles of physiological polyspermy in animal reproduction are discussed by comparison with other polyspermic species.  相似文献   

19.
To understand the mechanism of the very slow block to polyspermy in physiologically polyspermic eggs of the newt Cynops pyrrhogaster, we used confocal laser microscopy to determine the distribution of gamma-tubulin and cyclin B1 in fertilized eggs. More gamma-tubulin was localized in the animal hemisphere than in the vegetal. The centrosomes of the principal sperm nucleus and the zygote nucleus had much accumulated gamma-tubulin, but little gamma-tubulin was associated with the centrosomes of the accessory sperm nuclei. These results are consistent with observations that the largest sperm aster is associated with the principal sperm nucleus. More cyclin B1 appeared in the animal hemisphere than in the vegetal at the end of interphase. The zygote nucleus had much accumulated cyclin B1, but little cyclin B1 was associated with the accessory sperm nuclei. Cyclin B1 disappeared earlier around the zygote nucleus at metaphase than around the accessory sperm nuclei. These findings correspond well with the earlier entry and exit into metaphase in the zygote nucleus than in the accessory sperm nuclei in newt eggs, supporting our maturation-promoting factor (MPF) model that accounts for the mechanism of nuclear degeneration in physiologically polyspermic eggs. Cyclin B1 began to accumulate in the nucleus during interphase in synchronous cleavage, and its greatest expression was in the centrosomes and the nucleus at prometaphase.  相似文献   

20.
The whole process of double fertilization in sugar beet has been observed, the main results are as follows: About 2 hours after pollination, the pollen grains germinate, the sperms in the pollen tube are long-oval. 15 hours after pollination, the pollen tube destroys a synergid and releases two sperms on one side or at the chalazal end of the egg cell. The sperms are spherical each having a cytoplasmic sheath. 17 hours after pollination, one sperm enters the egg cell, and the sperm nucleus fuses with the egg nucleus rapidly. 21 hours after pollination, the zygote is formed. In the meantime, the primary endosperm nucleus has divided into two free endosperm nuclei. 25 hours after pollination, the zygote begins to divide, forming a two-celled proembryo. The dormancy stage of the zygote is about 4 hours. In the meantime the endosperm is at the stage of four free nuclei. 17 hours after pollination, the sperm nucleus comes into contact and fuses with the secondary nucleus. The sperm nucleus fuses with the secondary nucleus, faster than the sperm with the egg. he first division of the primary endosperm nucleus is earlier than that of the zygote, it takes place about 20 hours after pollination, the dormancy stage of the primary endosperm is about 2 hours. The endosperm is free nuclear. The fertilization of sugar beet belongs to premitotic type of syngamy. From the stage of zygote to the two-celled proembryo, it can be seen that addition- al sperms enter the embryo sac, but polyspermy has not been observed yet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号