首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin is a major component of stone cells in pear fruit, which significantly affects fruit quality. Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT), a recently discovered enzyme in plants, is an important gene that participates in the formation of lignin. Although HCT gene cloning and expression patterns have been studied in several species, including pear, there is still no extensive genome-wide bioinformatics analysis on the whole gene family, and the evolutionary history of HCT gene family is still unknown. A total of 82 HCT genes were identified in pear, most of which have one or two exons, and all with the conserved HXXXD motif and transferase domains. Based on the structural characteristics and phylogenetic analysis of these sequences, the HCT gene family genes could be classified into four main groups. Structural analysis also revealed that 25 % of HCT genes share a MYB binding site. Expansion of the HCT gene family mostly occurred before the divergence between Arabidopsis and Rosaceae, with whole-genome duplication or segmental duplication events playing the most important role in the expansion of the HCT gene family in pear. At the same time, purifying selection also played a critical role in the evolution of HCT genes. Five of the 82 HCT genes were verified by qRT-PCR to correspond to the pattern of stone cell formation during pear fruit development. The genome-wide identification, chromosome localization, gene structures, synteny, and expression analyses of pear HCT genes provide an overall insight into HCT gene family and their potential involvement in growth and development of stone cells.  相似文献   

2.
3.
Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.  相似文献   

4.
The plant-specific expansin proteins constitute an ancient and major gene family known to have roles in regulating diverse biological processes in plants. Although the functions of many expansin genes have been identified in wheat and other species, little is known about the evolution and genomic locations of the expansin genes in wheat (Triticum aestivum). In this study, a total of 87 expansin genes were identified in the wheat genome, including 52 EXPAs, 42 EXPBs and 4 EXLAs. The EXLB gene was not found in the wheat genome. Phylogenetic tree and comparative analysis revealed amplification of the EXPBs in rice, maize and wheat. The predicted wheat expansins were distributed across 14 of 21 chromosomes with different densities, 3 tightly co-located clusters and 15 paralogous pairs, indicating that tandem duplication and segmental duplication events also played roles in the evolution of expansins in wheat. In addition, the gene structures and conserved protein domains of wheat expansins suggest high levels of conservation within the phylogenetic subgroups. Analysis of a published microarray database showed that most wheat expansin genes exhibit different expression levels in different tissues and developmental stages. To our knowledge, this is the first report of a genome-wide analysis of the wheat expansin gene family, which should provide valuable information for further elucidating the classification and putative functions of the entire gene family.  相似文献   

5.
As the largest class of resistant genes, the nucleotide binding site (NBS) has been studied extensively at a genome-wide level in rice, sorghum, maize, barley and hexaploid wheat. However, no such comprehensive analysis has been conducted of the NBS gene family in Triticum urartu, the donor of the A genome to the common wheat. Using a bioinformatics method, 463 NBS genes were isolated from the whole genome of T. urartu, of which 461 had location information. The expansion pattern and evolution of the 461 NBS candidate proteins were analyzed, and 118 of them were duplicated. By calculating the lengths of the copies, it was inferred that the NBS resistance gene family of T. urartu has experienced at least two duplication events. Expression analysis based on RNA-seq data found that 6 genes were differentially expressed among Tu38, Tu138 and Tu158 in response to Blumeria graminis f.sp.tritici (Bgt). Following Bgt infection, the expression levels of these genes were up-regulated. These results provide critical references for further identification and analysis of NBS family genes with important functions.  相似文献   

6.
7.
The cold shock domain proteins (CSDPs) are small group of nucleic acid-binding proteins that act as RNA chaperones in growth regulation, development, and stress adaptation in plants. The functions of CSDPs have been studied in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), wheat (Triticum aestivum), and Chinese cabbage (Brassica rapa). To gain insight into the function of CSDPs in tomato (Solanum lycopersicum), we performed a genome-wide analysis of CSDPs through in silico characterization and expression profiling in different organs and in response to different abiotic stress and phytohormone treatments. We identified five non-redundant SlCSDP genes. The evolutionary analysis and phylogenetic classification indicated that tomato CSDPs are more closely related to potato than those of others. The five SlCSDP genes are distributed on four of the 12 tomato chromosomes and no segmental or tandem duplication events are detected among them. Expression analysis showed broad expression patterns with strong expression in fruit development and ripening. Expression of individual SlCSDP genes was significantly altered by stress and phytohormone treatments. SlCSDP2, SlCSDP3, and SlCSDP4 were highly induced by all four abiotic stresses and by phytohormone treatment in tomato. These findings provide a foundation for future research towards functional biological roles of CSDP gene in particular to develop tomato cultivars with large size, early ripening, and abiotic stress tolerance.  相似文献   

8.
9.
Sugars are important molecules that function not only as primary metabolites, but also as nutrients and signal molecules in plants. The sugar transport protein genes family SWEET has been recently identified. The availability of the Dendrobium officinale and Phalaenopsis equestris genome sequences offered the opportunity to study the SWEET gene family in this two orchid species. We identified 22 and 16 putative SWEET genes, respectively, in the genomes of D. officinale and P. equestris using comprehensive bioinformatics analysis. Based on phylogenetic comparisons with SWEET proteins from Arabidopsis and rice, the DoSWEET and PeSWEET proteins could be divided into four clades; among these, clade II specifically lacked PeSWEETs and clade IV specifically lacked DoSWEETs, and there were orthologs present between D. officinale and P. equestris. Protein sequence alignments suggest that there is a predicted serine phosphorylation site in each of the highly conserved MtN3/saliva domain regions. Gene expression analysis in four tissues showed that three PeSWEET genes were most highly expressed in the flower, leaf, stem, and root, suggesting that these genes might play important roles in growth and development in P. equestris. Analysis of gene expression in different floral organs showed that five PeSWEET genes were highly expressed in the column (gynostemium), implying their possible involvement in reproductive development in this species. The expression patterns of seven PeSWEETs in response to different abiotic stresses showed that three genes were upregulated significantly in response to high temperature and two genes were differently expressed at low temperature. The results of this study lay the foundation for further functional analysis of SWEET genes in orchids.  相似文献   

10.
Carotenoid cleavage dioxygenases (CCDs) in plant species is one of the most important enzymes in the carotenoid metabolism. In this study, we performed a comprehensive analysis for the CCDs family in Solanum lycopersicum based on the whole tomato genome sequences and explored their expression pattern. At least seven CCD genes were discovered in the tomato genome sequence. Two pairs of them were arranged in tandem. The tandem duplication events could be dating to approximately 14 and 21 Mya, and the tandem duplication genes experienced a purifying selection during the course of evolution after diversification. Additionally, subcellular localization revealed that four members were predicted to be cytoplasm-localized and the three remaining members plastids-localized. Subsequently, a number of cis-regulatory elements, which were involved in light responsiveness, hormone regulation, and abiotic and biotic stresses, were identified in the promoter sequences of SlCCD genes. Phylogenetic tree revealed that the CCDs from Solanaceae crops have a closer genetic relationship. The difference in abundance and distinct expression patterns during the vegetative and reproductive development suggests different functions for these seven SlCCDs. Our findings suggest that SlCCDs family play important roles throughout the whole life course and will lay the foundation for further elaborating the regulatory mechanism of each member in tomato.  相似文献   

11.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

12.
13.
14.
Multidrug and toxic compound extrusion (MATE) proteins are a group of secondary active transporters, which widely exist in all living organisms and play important role in the detoxication of endogenous secondary metabolites and exogenous agents. However, to date, no systematic and comprehensive study of this family is reported in maize. Here, a total of 49 MATE genes (ZmMATE) were identified and divided into seven groups by phylogenetic analysis. Conserved intro–exon structures and motif compositions were investigated in these genes. Results by gene locations indicated that these genes were unevenly distributed among all 10 chromosomes. Tandem and segmental duplications appeared to contribute to the expansion and evolution of this gene family. The Ka/ Ks ratios suggested that the ZmMATE has undergone large-scale purifying selection on the maize genome. Interspecies microsynteny analysis revealed that there were independent gene duplication events of 10 ZmMATE. In addition, most maize MATE genes exhibited different expression profiles in diverse tissues and developmental stages. Sixteen MATE genes were chosen for further quantitative real-time polymerase chain reaction analysis showed differential expression patterns in response to aluminum treatment. These results provide a useful clue for future studies on the identification of MATE genes and functional analysis of MATE proteins in maize.  相似文献   

15.
16.
17.
Yellow stripe-like (YSL) family transporters, belonging to the oligopeptide transporter family, are significant iron transport proteins. In this study, we provided a genome-wide identification and analysis of the YSL gene family in Pyrus bretschneideri. We found eight YSL gene members in pear, clustered into four main groups in the phylogenetic tree. Segmental duplication has played a key role in the expansion of the pear YSL family. The pollen activity analysis indicated that the low concentration of iron ion was beneficial to both pear pollen germination and pollen tube growth. Among the eight YSL genes, PbrYSL4 had particularly high expression in all pear tissues; it was significantly responsive to change in the external iron ion supply in the pollen cultivation in vitro. Moreover, expression of PbrYSL4 in yeast mutant Δccc1 (Ca 2+ -sensitive cross-complementer 1 mutant) made Δccc1 restore growth in high iron medium. These data together suggest that PbrYSL4 was involved in the movement of iron in the pear pollen tube growth.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号