首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four 17β-esters of norethisterone (17α-ethynyl-17β-hydroxyestr-4-en -3-one), formulated both as oily solutions and aqueous suspensions, were administered intramuscularly to rabbits and free plasma levels measured for periods up to 9 weeks. For all formulations of the compounds, the disappearance of norethisterone following peak plasma levels obeyed first-order kinetics. Since different slope values were obtained for different formulations of the same compound, the values reflected the release rates of the esters from the formulations. Fusion data, partition coefficients and solubilities of the compounds in 2,2,4-trimethyl-pentane and water were obtained and these properties were related to the biological activity of the formulations. For oily solutions, the differences in plasma levels were ascribed to the different partition coefficients of the esters between the oil and tissue fluids. For suspensions, the different activity in relation to an oily solution of an ester was related to the strength of intermolecular forces in the crystal lattice and to the relative thermodynamic activity in the two formulations. The results demonstrate that microcrystalline suspensions do not always have a longer duration of activity than oily solutions of the same compound after intramuscular injection.  相似文献   

2.
A large number of esters of norethisterone (17α-ethynyl-17β-hydroxyestr-4-en-3-one) and levonorgestrel (D-(-)-13β-ethyl-17α-ethynyl-17β-hydroxygon-4-en-3-one) were synthesized and tested for biological activity. The test employed in these studies was the duration of estrus suppression in cycling mature rats. In the norethisterone series several esters exhibited duration of activity comparable to that of norethisterone enarthate. In the levonorgestrel series the butanoic, cyclobutylcarboxylic and cyclopropylcarboxylic esters were longer acting than medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3, 20-dione) when prepared as aqueous microcrystalline suspensions.  相似文献   

3.
Esters of levonorgestrel (13β-ethyl-17α-ethynyl-17β-hydroxygon-4-en -3-one) with a variety of aliphatic and alicyclic carboxylic acids have been prepared and characterised. In tests for the suppression of estrus in rats, esters with short-chain aliphatic acids and with cyclobutane-carboxylic acid were considerably more active than the standard, norethisterone enanthate (17α-ethynyl-17β-hydroxyestr-4-en-3-one). Such esters show great promise for development as long-acting progestogens.  相似文献   

4.
The synthesis of esters of norethisterone (17α-ethynyl-17β-hydroxy-estr-4-en-3-one) with acids containing a benzene ring is described, two methods of esterification being compared in terms of yield and convenience. The activities of these esters as long-acting contraceptive agents have been evaluated.  相似文献   

5.
More than 200 samples of esters of norethisterone (17α-ethynyl-17β-hydroxyestr-4-en-3-one) and levonorgestrel (13β-ethyl-17α-ethynyl-17β-hydroxygon-4-en-3-one) have been analysed by a combination of techniques, including high performance liquid chromatography (HPLC). Compounds having a purity below the required limit (99.5%) were purified, mainly by preparative HPLC, prior to formulation and biological evaluation as long-acting progestogens.  相似文献   

6.
17β-Hydroxysteroid dehydrogenase (17β-HSD) activity has been described in all filamentous fungi tested, but until now only one 17β-HSD from Cochlioboluslunatus (17β-HSDcl) was sequenced. We examined the evolutionary relationship among 17β-HSDcl, fungal reductases, versicolorin reductase (Ver1), trihydroxynaphthalene reductase (THNR), and other homologous proteins. In the phylogenetic tree 17β-HSDcl formed a separate branch with Ver1, while THNRs reside in another branch, indicating that 17β-HSDcl could have similar function as Ver1. The structural relationship was investigated by comparing a model structure of 17β-HSDcl to several known crystal structures of the short chain dehydrogenase/reductase (SDR) family. A similarity was observed to structures of bacterial 7α-HSD and plant tropinone reductase (TR). Additionally, substrate specificity revealed that among the substrates tested the 17β-HSDcl preferentially catalyzed reductions of steroid substrates with a 3-keto group, Δ4 or 5α, such as: 4-estrene-3,17-dione and 5α-androstane-3,17-dione.  相似文献   

7.
The 17β-HSD (17β-hydroxysteroid dehydrogenase) from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is a NADP(H)-dependent enzyme that preferentially catalyses the interconversion of inactive 17-oxo-steroids and their active 17β-hydroxy counterparts. 17β-HSDcl belongs to the SDR (short-chain dehydrogenase/reductase) superfamily. It is currently the only fungal 17β-HSD member that has been described and represents one of the model enzymes of the cP1 classical subfamily of NADPH-dependent SDR enzymes. A thorough crystallographic analysis has been performed to better understand the structural aspects of this subfamily and provide insights into the evolution of the HSD enzymes. The crystal structures of the 17β-HSDcl apo, holo and coumestrol-inhibited ternary complex, and the active-site Y167F mutant reveal subtle conformational differences in the substrate-binding loop that probably modulate the catalytic activity of 17β-HSDcl. Coumestrol, a plant-derived non-steroidal compound with oestrogenic activity, inhibits 17β-HSDcl [IC50 2.8?μM; at 100?μM substrate (4-oestrene-3,17-dione)] by occupying the putative steroid-binding site. In addition to an extensive hydrogen-bonding network, coumestrol binding is stabilized further by π-π stacking interactions with Tyr212. A stopped-flow kinetic experiment clearly showed the coenzyme dissociation as the slowest step of the reaction and, in addition to the low steroid solubility, it prevents the accumulation of enzyme-coenzyme-steroid ternary complexes.  相似文献   

8.
The great demand for improved long-acting injectable steroid contraceptives, particularly in developing countries, and the relative lack of interest from the pharmaceutical industry to develop such products stimulated WHO to launch a synthetic and screening programme to find improved, safe and acceptable injectable preparations. More than 210 esters of norethisterone (17 alpha-ethynyl-17 beta-hydroxyestr-4-en-3-one) and levonorgestrel (D-(-)-13 beta-ethyl-17 alpha-ethynyl-17 beta-hydroxygon-4-en-3-one) have been prepared in university-based research laboratories situated mainly in developing countries, and then screened by NICHHD in animal models. The following three compounds, levonorgestrel butanoate, cyclopropylcarboxylate and cyclobutylcarboxylate, proved to be particularly long-acting when administered as microcrystalline suspensions. The overall strategy of this research and development programme is described.  相似文献   

9.
Several esters of norethisterone (17α-ethynyl-17β-hydroxyestr-4-en-3-one) with carboxylic acids containing a cyclopropyl or cyclobutyl ring have been synthesized and the stereochemistries of the side-chains determined.  相似文献   

10.
Chemically synthesized 4-hydroxybenzoate (4HBA) is widely used in the chemical and electrical industries as a material for producing polymers such as those of the liquid crystal type. Its alkyl esters, called parabens, have been the most widely used preservatives by the food and cosmetic industries. We report here for the first time a microorganism, a marine bacterium, which biosynthesizes these petrochemical products. The marine bacterial strain, A4B-17, which was found to belong to the genus Microbulbifer on the basis of its rRNA and gyrB sequences, was isolated from an ascidian in the coastal waters of Palau. Strain A4B-17 was, surprisingly, found to produce 10 mg/liter of 4HBA, together with its butyl (24 mg/liter), heptyl (0.4 mg/liter), and nonyl (6 mg/liter) esters. We therefore characterized 23 other marine bacteria belonging to the genus Microbulbifer, which our institute had previously isolated from various marine environments, and found that these bacteria also produced 4HBA, although with low production levels (less than one-fifth of that produced by A4B-17). We also show that the alkyl esters of 4HBA produced by strain A4B-17 were effective in preventing the growth of yeasts, molds, and gram-positive bacteria.  相似文献   

11.
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD-3) is a member of the short-chain dehydrogenase/reductase (SDR) family and is essential for the reductive conversion of inactive C19-steroid, androstenedione, to the biologically active androgen, testosterone, which plays a central role in the development of the male phenotype. Mutations that inactivate this enzyme give rise to a rare form of male pseudohermaphroditism, referred to as 17β-HSD-3 deficiency. One such mutation is the replacement of arginine at position 80 with glutamine, compromising enzyme activity by increasing the cofactor binding constant 60-fold. In the absence of a 17β-HSD-3 crystal structure, we have grafted its amino acid sequence for the NADPH binding site on the X-ray crystal structures of glutathione reductase (Protein Data Bank code 1gra) and 17β-HSD type 1 (Protein Data Bank codes 1fdv and 1fdu) where we find the trunk of the arginine 80 side chain forms part of the hydrophobic pocket for the purine ring of adenosine while its guanidinium moiety interacts with the 2′-phosphate to both stabilize cofactor binding and neutralize its intrinsic negative charge through two hydrogen bonds. To qualitatively assess the role arginine 80 plays in both selecting and stabilizing NADPH binding, it was replaced with each amino acid and the mutant enzymes subjected to enzymatic analysis. There are only seven enzymes exhibiting any measurable enzymatic activity with arginine~lysine>leucine>glutamine>methionine>tyrosine>isoleucine. With an aspartic acid at position 58 in 17β-HSD-3 occupying the equivalent space in the cofactor binding pocket as arginine 224 in glutathione reductase or serine 12 in 17β-HSD-1, there was an expectation that some of the mutants might use NADH as a cofactor. In no case was NADH found to substitute for NADPH.  相似文献   

12.
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) converts the potent estrogen estradiol into the weakly active keto form estrone. Because of its expression in bone, inhibition of 17β-HSD2 provides an attractive strategy for the treatment of osteoporosis, a condition that is often caused by a decrease of the active sex steroids. Currently, there are no drugs on the market targeting 17β-HSD2, but in multiple studies, synthesis and biological evaluation of promising 17β-HSD2 inhibitors have been reported. Our previous work led to the identification of phenylbenzenesulfonamides and -sulfonates as new 17β-HSD2 inhibitors by ligand-based pharmacophore modeling and virtual screening. In this study, new molecules representing this scaffold were synthesized and tested in vitro for their 17β-HSD2 activity to derive more profound structure-activity relationship rules.  相似文献   

13.
Chemically synthesized 4-hydroxybenzoate (4HBA) is widely used in the chemical and electrical industries as a material for producing polymers such as those of the liquid crystal type. Its alkyl esters, called parabens, have been the most widely used preservatives by the food and cosmetic industries. We report here for the first time a microorganism, a marine bacterium, which biosynthesizes these petrochemical products. The marine bacterial strain, A4B-17, which was found to belong to the genus Microbulbifer on the basis of its rRNA and gyrB sequences, was isolated from an ascidian in the coastal waters of Palau. Strain A4B-17 was, surprisingly, found to produce 10 mg/liter of 4HBA, together with its butyl (24 mg/liter), heptyl (0.4 mg/liter), and nonyl (6 mg/liter) esters. We therefore characterized 23 other marine bacteria belonging to the genus Microbulbifer, which our institute had previously isolated from various marine environments, and found that these bacteria also produced 4HBA, although with low production levels (less than one-fifth of that produced by A4B-17). We also show that the alkyl esters of 4HBA produced by strain A4B-17 were effective in preventing the growth of yeasts, molds, and gram-positive bacteria.  相似文献   

14.
H Kuhl  H D Taubert 《Steroids》1973,22(1):73-87
A method for the synthesis of dimeric, trimeric and tetrameric estradiol esters is described. It is based on the esterification of the OH-groups of estradiol-17β or estradiol-17β-acetate with 3-acetoxy-estradiol-17β-hemisuccinate as carboxylic acid component in the presence of N, N'-carbonyldiimidazole. Preliminary biological tests have shown that these compounds possess a very protracted estrogenic activity when administered s.c. to the oophorectomized rat. A single injection of 40 μg/rat of the trimeric estradiol derivative e.g. brought about vaginal estrus for 120 days as compared to 80 days when estradiol undecylate was used.  相似文献   

15.
We have previously reported the discovery of a new class of potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) derived from benzylidene oxazolidinedione and thiazolidinedione scaffolds. In this study, these analogs were designed, synthesized, and evaluated in a human cell-based assay. The detailed structure-activity relationship (SAR) surrounding this pharmacophore were developed, and consequently a number of compounds from this series demonstrated single-digit nanomolar 17β-HDS3 inhibitory activity in vitro. Subsequent optimization work in pursuit of the improvement of oral bioavailability demonstrated in vivo proof-of-concept by prodrug strategy based on phosphate esters for these 17β-HSD3 inhibitors. When a phosphate ester 16 was administered orally at a high dose of 100mg/kg, 16 showed approximately two times more potent testosterone (T)-lowering effect against a positive control in the luteinizing hormone-releasing hormone (LH-RH)-induced T production assay. The T-lowering effect continued at ca 10% level of control over 4h after administration. The nonsteroidal molecules based on this series have the potential to provide unique and effective clinical opportunities for treatment of prostate cancer.  相似文献   

16.
The reduction of 3-ethylenedioxy-7-oximino-5-androsten-17β-yl acetate and of its 17β-tetrahydropyranyl ether analog with sodium in ethanol, followed by thin-layer chromatography, allowed the isolation of the corresponding 17β-hydroxy- and 17β-tetrahydropyranyioxy-5-en-7β- and 7α-amines which were also characte-rized as 7-acetamides. The acylation of the two epimeric 17β-hydroxy-5-en-7-amines with succinic anhydride followed by selective saponification of the 17β-hemisuccinate group and diazomethane esterification, gave the corresponding 17β-hydroxy-5-en-7β- and 7α-hemisuccinamido methyl esters characterized also as 17β-acetates. On the other hand, the acylation of the two 17β-tetrahydropyranyl-oxy-5-en-7-amines with the acid chloride of terephthalic acid monomethyi ester led to the more rigid 7β- and 7α-terephthalamido methyl ester side-chains. The acidolysis of the 3-ethyleneketal protecting group of the preceding 5-en-7-N-acyl derivatives regenerated the 4-en-3-oxo function while the 17β-tetrahydropyranyl ether group was cleaved simultaneously into the 17β-alcohol. The four desired 7β- and 7α-hemisuccinamido- and terephthalamido carboxylic side-chain derivatives of 17β-hydroxy-4-androsten-3-one (testosterone) were finally obtained by saponification of the corresponding methyl esters.  相似文献   

17.
It has been shown that the cultured cells of Nicotiana tabacum “Bright Yellow” are capable of transforming testosterone to Δ4-androstene-3, 17-dione, 5α-androstan-17β-ol-3-one, 5α-androstane-3β, 17β-diol, its dipalmitate and 3- and 17-monoglucosides, epiandrosterone, its palmitate and glucoside, testosterone glucoside. 5α-Androstane-3β, 17β-diol dipalmitate and 3- and 17-monoglucosides, epiandrosterone palmitate and glucoside, and testosterone glucoside have been found for the first time as metabolites of testosterone in plant systems. Δ4-Androstene-3,17-dione was converted to testosterone. 5α-Androstan-17β-ol-3-one, which has been recognized as an active form of testosterone in mammals, was also detected. It has also been demonstrated that [4-14C]testosterone is actively incorporated in these transformations.  相似文献   

18.
The open reading frame PA3859 of Pseudomonas aeruginosa encodes an intracellular carboxylesterase belonging to a group of microbial enzymes (EC 3.1.1.1) that catalyze the hydrolysis of aliphatic and aromatic esters with a broad substrate specificity. With few exceptions, for this class of enzymes, belonging to the α/β-hydrolase fold superfamily, very little information is available regarding their biochemical activity and in vivo function. The X-ray crystal structure of recombinant PA3859 has been determined for two crystal forms (space groups P21 and P21212). The kinetic properties of the enzyme were studied using p-nitrophenyl esters as substrates and data fitted to a surface dilution mixed micelle kinetic model. Enzymatic assays and computational docking simulations, pinpointed the enzyme’s preference for esters of palmitic and/or stearic acids and provided insights into the enzyme–substrate favorable binding modes.  相似文献   

19.
Factors affecting the solid state miscibility of saturated chain cholesteryl esters were determined from electron diffraction and differential scanning calorimetric measurements on a homologous series which included two types of crystal packing. Electron diffraction patterns from solution- and epitaxially crystallized microcrystals gave measured unit cell constants consistent with the bilayer crystal form for myristate, pentadecanoate, palmitate, and stearate esters. Cholesteryl undecanoate crystallized as the monolayer I structure and cholesteryl laurate was polymorphic, packing in either monolayer I or bilayer forms. No evidence was found for the monolayer II form of the laurate claimed in earlier work. It is clear that solid solution formation follows general rules formulated earlier by Kitaigorodskii for molecular crystals. A symmetry criterion must be satisfied first of all, i.e., two compounds that solidify in greatly different crystal structures will not form continuous solid solutions (e.g., cholesteryl undecanoate/cholesteryl myristate). Within a given crystal structure type, solid solution is permitted when the molecular volumes are similar. (For example, cholesteryl myristate forms an ideal solid solution with cholesteryl pentadecanoate, a nonideal solution with cholesteryl palmitate, and a eutectic of solid solutions with cholesteryl stearate.) For the polymorphic cholesteryl laurate, solid solutions of either the monolayer I structure (e.g., with cholesteryl undecanoate) or bilayer structure (e.g., with cholesteryl myristate) are permitted.  相似文献   

20.
The fungus Aspergillus tamarii metabolizes progesterone to testololactone in high yield through a sequential four step enzymatic pathway which, has demonstrated flexibility in handling a range of steroidal probes. These substrates have revealed that subtle changes in the molecular structure of the steroid lead to significant changes in route of metabolism. It was therefore of interest to determine the metabolism of a range of 5-ene containing steroidal substrates. Remarkably the primary route of 5-ene steroid metabolism involved a 3β-hydroxy-steroid dehydrogenase/Δ5–Δ4 isomerase (3β-HSD/isomerase) enzyme(s), generating 3-one-4-ene functionality and identified for the first time in a fungus with the ability to handle both dehydroepiansdrosterone (DHEA) as well as C-17 side-chain containing compounds such as pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one. Uniquely in all the steroids tested, 3β-HSD/isomerase activity only occurred following lactonization of the steroidal ring-D. Presence of C-7 allylic hydroxylation, in either epimeric form, inhibited 3β-HSD/isomerase activity and of the substrates tested, was only observed with DHEA and its 13α-methyl analogue. In contrast to previous studies of fungi with 3β-HSD/isomerase activity DHEA could also enter a minor hydroxylation pathway. Pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one were metabolized solely through the putative 3β-HSD/isomerase pathway, indicating that a 17β-methyl ketone functionality inhibits allylic oxidation at C-7. The presence of the 3β-HSD/isomerase in A. tamarii and the transformation results obtained in this study highlight an important potential role that fungi may have in the generation of environmental androgens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号