首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) are closely related enzymes in plant nitrogen metabolism and potential targets for improving nitrogen use efficiency. However, little research has focused on the enzyme-encoding genes in tomato. Here, a comprehensive study of these genes was conducted. Six GS genes, two GOGAT genes and five GDH genes were identified in tomato. Bioinformatics and gene expression analyses suggested that these genes evolved species-specific regulatory properties and biological functions in tomato. SlNADH-GOGAT, SlGS1.1 and SlNAD-GDHB1 were abundantly expressed in roots, SlGS1.1 can be induced by nitrogen deprivation, and SlGS1.2, SlGS1.3, SlNADH-GOGAT and SlNAD-GDHB1 can be induced by the re-supply of nitrogen after 5 days of deprivation, they may play key roles in primary nitrogen assimilation. SlFd-GOGAT, SlGS1.1 and SlNAD-GDHA1-A2 were also highly expressed in fruits, indicating their important roles in fruit development and ripening. Tomato GS, GOGAT and GDH may be involved in stress responsiveness, since most of these genes modified their expression levels under drought, cold or heat stress treatment. We believe these findings will assist in the exploration of the genes’ biological functions and regulatory mechanisms, as well as the studies to improve nitrogen use efficiency, stress resistance and fruit quality in tomato.  相似文献   

4.
5.
Three homeologous copies of the TaSMT1 gene for C24-sterol methyltransferase, which are located on chromosomes A, B, and D of Triticum aestivum hexaploid genome, were discovered. The bioinformatic analysis of the structure of these genes and sequencing de novo promoter sequences revealed differential expression of homeologous TaSMT1 genes in leaves and roots of wheat seedlings under normal conditions and in stress.  相似文献   

6.
7.

Background

In higher plants, inorganic nitrogen is assimilated via the glutamate synthase cycle or GS-GOGAT pathway. GOGAT enzyme occurs in two distinct forms that use NADH (NADH-GOGAT) or Fd (Fd-GOGAT) as electron carriers. The goal of the present study was to characterize wheat Fd-GOGAT genes and to assess the linkage with grain protein content (GPC), an important quantitative trait controlled by multiple genes.

Results

We report the complete genomic sequences of the three homoeologous A, B and D Fd-GOGAT genes from hexaploid wheat (Triticum aestivum) and their localization and characterization. The gene is comprised of 33 exons and 32 introns for all the three homoeologues genes. The three genes show the same exon/intron number and size, with the only exception of a series of indels in intronic regions. The partial sequence of the Fd-GOGAT gene located on A genome was determined in two durum wheat (Triticum turgidum ssp. durum) cvs Ciccio and Svevo, characterized by different grain protein content. Genomic differences allowed the gene mapping in the centromeric region of chromosome 2A. QTL analysis was conducted in the Svevo×Ciccio RIL mapping population, previously evaluated in 5 different environments. The study co-localized the Fd-GOGAT-A gene with the marker GWM-339, identifying a significant major QTL for GPC.

Conclusions

The wheat Fd-GOGAT genes are highly conserved; both among the three homoeologous hexaploid wheat genes and in comparison with other plants. In durum wheat, an association was shown between the Fd-GOGAT allele of cv Svevo with increasing GPC - potentially useful in breeding programs.  相似文献   

8.
9.
10.
11.
Wheat production in many wheat-growing regions is vulnerable to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). Several previous studies showed that most of the durum cultivars adapted to the upper Great Plains in the USA have good resistance to the major Pgt pathotypes, including the Ug99 race group. To identify the stem rust resistance (Sr) genes in the durum cultivar ‘Lebsock’, a tetraploid doubled haploid (DH) population derived from a cross between Lebsock and Triticum turgidum ssp. carthlicum PI 94749 was screened with the Pgt races TTKSK, TRTTF, and TTTTF. The stem rust data and the genotypic data previously developed were used to identify quantitative trait loci (QTL) associated with resistance. We identified one QTL each on chromosome arms 4AL, 6AS, 6AL, and 2BL. Based on marker and race-specification analysis, we postulated that the QTL on 4AL, 6AS, 6AL, and 2BL correspond to Sr7a, Sr8155B1, Sr13, and likely Sr9e, respectively. The results indicated that most of the US durum germplasm adapted to the upper Great Plains likely harbors the four major Sr genes characterized in this study. Among these genes, Sr8155B1 was recently identified and shown to be unique in that it conferred susceptibility to TTKSK but resistance to variant race TTKST. Two, three, and one thermal asymmetric reverse PCR (STARP) markers were developed for Sr7a, Sr8155-B1, and Sr13, respectively. Knowledge of the Sr genes in durum germplasm and the new STARP markers will be useful to pyramid and deploy multiple Sr genes in future durum and wheat cultivars.  相似文献   

12.
Proteins with glycine-rich repeats have been identified in plants, mammalians, fungi, and bacteria. Plant glycine-rich proteins have been associated to stress response. Previously, we reported that the Arabidopsis thaliana AtGRDP2 gene, which encodes a protein with a glycine-rich domain, plays a role in growth and development of A. thaliana and Lactuca sativa. In this study, we generated composite Phaseolus vulgaris plants that overexpress the AtGRDP2 gene in hairy roots generated by Agrobacterium rhizogenes. We observed that hairy roots harboring the AtGRDP2 gene developed more abundant and faster-growing roots than control hairy roots generated with the wild type A. rhizogenes. In addition, composite common bean plants overexpressing the AtGRDP2 gene in roots were more tolerant to salt stress showing increments in their fresh and dry weight. Our data further support the role of plant GRDP genes in development and stress response.  相似文献   

13.
14.
15.
16.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

17.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

18.
Drought stress in plants often leads to reduced productivity and limited geographic distribution, which can affect human life and ecosystems. The responses of diploid and tetraploid Paulownia tomentosa × Paulownia fortunei to drought have been reported, but the effects of drought stress on the levels of microRNA (miRNA) expression have not been published so far. Here, we constructed four small RNA (sRNA) libraries and four corresponding degradome libraries of well-watered and severe drought-treated diploid and tetraploid plants to identify the miRNAs and their putative target genes in Paulownia ‘yuza 1’, a P. tomentosa × P. fortunei hybrid clone, by sRNA and degradome sequencing. The putative target genes of miRNAs were annotated with gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Three conserved and 21 novel miRNAs responsive to drought stress were found, in which 15 were identified as the main drought responsive miRNAs that conferred higher resistance in tetraploid than in diploid of Paulownia ‘yuza 1’. Our results will lay the foundation for investigating the roles of miRNAs in Paulownia and other trees in response to drought.  相似文献   

19.
20.
Expression profiling of miRNAs has the ability to reveal the essence of somatic embryogenesis (SE). qRT-PCR is one of the most commonly used techniques for dynamic miRNA detection but requires optimal reference genes for data reliability. This is the first report on reference gene validation for miRNA expression normalization in Lilium (Lilium pumilum DC. Fisch. and Lilium davidii var. unicolor). In this study, seventeen miRNAs together with two snRNAs (U4, U6), one rRNA (5S rRNA) and three protein-coding genes (FP, ACT, GAPDH) were selected as reference candidates, and their expression stability was validated by qRT-PCR among eleven developing SE cultures in two lilies. Four normalization algorithms, including geNorm, BestKeeper, NormFinder and RefFinder, were also used to evaluate the stability of the reference candidates. For Lilium pumilum DC. Fisch., lpu-miR159a was the optimal reference gene during SE, followed by lpu-miR408b, while U6 was the least stable reference candidate. For Lilium davidii var. unicolor, FP presented greater stability than did half of the miRNA candidates, but the best reference gene was lda-miR162, followed by lda-miR159a. Further analysis of the expression level of miR156 and miR529 was used to evaluate the validity of the reference genes in both lilies. In general, miRNAs are superior to common protein-coding genes and snRNAs / rRNAs as reference genes for miRNA expression normalization during Lilium SE, and the most suitable reference miRNA is different between two species in the same Lilium genus. This is a pioneer study using suitable miRNAs as reference genes in Lilium and constitutes a small but essential step for the further exploration of miRNA function in Lilium, thus offering valuable references for other plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号