共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Doucet-Chabeaud G Godon C Brutesco C de Murcia G Kazmaier M 《Molecular genetics and genomics : MGG》2001,265(6):954-963
4.
Bei Wu Yun-He Li Jian-Yong Wu Qi-Zhu Chen Xia Huang Yun-Feng Chen Xue-Lin Huang 《Molecular biology reports》2011,38(5):3189-3194
5.
Telomeric DNA-binding proteins (TBPs) are crucial components that regulate the structure and function of eukaryotic telomeres and are evolutionarily conserved. We have identified two homologues of AtTBP1 (for Arabidopsis thaliana telomeric DNA binding protein 1), designated as AtTBP2 and AtTRP2, which encode proteins that specifically bind to the telomeric DNA of this plant. These proteins show extensive homology with other known plant TBPs. The isolated C-terminal segments of these proteins were capable of sequence-specific binding to duplex telomeric plant DNA in vitro. DNA bending assays using the Arabidopsis TBPs revealed that AtTBP1 and AtTBP2 have DNA-bending abilities comparable to that of the human homologue hTRF1, and higher than those of AtTRP1 and AtTRP2. 相似文献
6.
7.
Ying Su Yumei Wang Junbo Zhen Xi Zhang Zhiwen Chen Le Li Yi Huang Jinping Hua 《Plant Molecular Biology Reporter》2017,35(4):442-456
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance. 相似文献
8.
9.
10.
11.
High salinity is an environmental factor that inhibits plant growth and development, leading to large losses in crop yields.
We report here that mutations in SIZ1 or PHO2, which cause more accumulation of phosphate compared with the wild type, enhance tolerance to salt stress. The siz1 and pho2 mutations reduce the uptake and accumulation of Na+. These mutations are also able to suppress the Na+ hypersensitivity of the sos3-1 mutant, and genetic analyses suggest that SIZ1 and SOS3 or PHO2 and SOS3 have an additive effect on the response to salt stress. Furthermore, the siz1 mutation cannot suppress the Li+ hypersensitivity of the sos3-1 mutant. These results indicate that the phosphate-accumulating mutants siz1 and pho2 reduce the uptake and accumulation of Na+, leading to enhanced salt tolerance, and that, genetically, SIZ1 and PHO2 are likely independent of SOS3-dependent salt signaling. 相似文献
12.
13.
14.
15.
16.
Gibberellin 2-oxidases (GA2oxs) irreversibly convert bioactive gibberellins (GAs) and their immediate precursors into inactive GAs via 2-β hydroxylation and so regulate gibberellin content in plants. However, to the best of our knowledge, little has been known about the GA2oxs and its function in cool season turfgrass Poa pratensis. In this study, rapid amplification of cDNA end (RACE) was employed to isolate PpGA2ox from P. pratensis. The open reading frame of PpGA2ox was 1 047 bp in length, corresponding to 348 amino acids. PpGA2ox was localized in both nucleus and cytoplasm. The expression of PpGA2ox could be up-regulated by 10 μM gibberellic acid, 5 μM methyl jasmonate, or 10 μM indole-3-acetic acid. In addition, its native promoter could drive GUS expression in both leaf apex and shoot apical region. Moreover, overexpression of PpGA2ox in Arabidopsis led to GA-deficiency leading to dwarf phenotype, delayed flowering time, and increased chlorophyll content. Our study suggests that PpGA2ox could be a candidate gene for breeding new cultivars of P. pratensis. 相似文献
17.
18.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
19.
To get insight into mechanism by which apple tree (Malus domestica Borkh.) regulates flowering, two apple flowering locus T (FT) homologues, MdFT1 and MdFT2, were isolated from the leaf cDNAs of cultivar Gala. The open reading frames (ORFs) of two MdFTs encoded 174 amino acids. The deduced amino acid sequence of MdFT1 and MdFT2 showed 94.3 % similarity to each other, while 72.6 and 76.0 % to AtFT protein, respectively. Semi-quantitative RT-PCR indicated
their specific expression in leaves. Visualization of MdFT2-GFP fusion protein demonstrated its localization on membrane.
Ectopic overexpression of either MdFT1 or MdFT2 in Arabidopsis significantly induced early flowering by activating the downstream flowering-related genes. 相似文献
20.