首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

2.
Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes. Here, we reviewed the recent progress in B. subtilis gene editing using CRISPR/Cas9 based tools, and highlighted state-of-the-art strategies for design of CRISPR/Cas9 system. Finally, future perspectives on the use of CRISPR/Cas9 genome engineering for sequence-specific genome editing in B. subtilis are provided.  相似文献   

3.
4.
Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.  相似文献   

5.
6.
7.

Objectives

To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins.

Results

To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations.

Conclusions

We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.
  相似文献   

8.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) technology provides an efficient tool for editing the genomes of plants, animals and microorganisms. Glutamate:glyoxylate aminotransferase 1 (GGAT1) is a key enzyme in the photorespiration pathway; however, its regulation mechanism is largely unknown. Given that EMS-mutagenized ggat1 (Col-0 background) M2 pools have been generated, ggat1 (Ler background) should be very useful in the positional cloning of suppressor and/or enhancer genes of GGAT1. Unfortunately, such ggat1 (Ler) mutants are not currently available. In this study, CRISPR/Cas9 was used to generate ggat1 (Ler) mutants. Two GGAT1 target single-guide RNAs (sgRNAs) were constructed into pYLCRISPR/Cas9P35S-N, and flowering Arabidopsis (Ler) plants were transformed using an Agrobacterium tumefaciens-mediated floral dip protocol. Eleven chimeric and two heterozygous GGAT1-edited T1 lines of target 1 were separately screened from positive transgenic lines. Two ggat1 homozygous mutants, CTC-deletion and T-deletion at target 1, were generated from T2 generations of the 13 T1 lines. The edited mutation sites were found to be stable through generations regardless of whether the T-DNA was present. In addition, the genetic segregation of the mutation sites obeyed the Mendelian single gene segregation rule, and no mutations were detected at the possible off-target site. Also, the two independent ggat1 mutants had similar photorespiration phenotypes and down-regulated GGAT enzyme activity. Together, these results indicate that genetically stable ggat1 (Ler) mutants were generated by CRISPR/Cas9 genome editing, and these mutants will be used to promote the positional cloning of suppressor and/or enhancer genes of GGAT1 in our subsequent study.  相似文献   

9.
10.
11.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

12.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

13.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

14.
The Foxn1 gene is known as a critical factor for the differentiation of thymic and skin epithelial cells. This study was designed to examine the phenotype of Foxn1-modified rats generated by the CRISPR/Cas9 system. Guide-RNA designed for first exon of the Foxn1 and mRNA of Cas9 were co-injected into the pronucleus of Crlj:WI zygotes. Transfer of 158 injected zygotes resulted in the birth of 50 offspring (32 %), and PCR identified five (10 %) as Foxn1-edited. Genomic sequencing revealed the deletion of 44 or 60 bp from and/or insertion of 4 bp into the Foxn1 gene in a single allele. The number of T-cells in the peripheral blood lymphocytes of mutant rats decreased markedly. While homozygous deleted mutant rats had no thymus, the mutant rats were not completely hairless and showed normal performance in delivery and nursing. Splicing variants of the indel-mutation in the Foxn1 gene may cause hypomorphic allele, resulting in the phenotype of thymus deficiency and incomplete hairless. In conclusion, the mutant rats in Foxn1 gene edited by the CRISPR/Cas9 system showed the phenotype of thymus deficiency and incomplete hairless which was characterized by splicing variants.  相似文献   

15.
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated “cut and paste” mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.  相似文献   

16.
17.
Ran is involved in response to external stimuli. In this study, six MsRan gene cDNA sequences were isolated from wild banana (Musa spp. AB group) from Sanming City, China. Sequence analysis reveals that MsRan3A, MsRan3A-1a, and MsRan3C contained Ran protein domains including a GTP hydrolysis domain, a RanGAP-binding domain, and an acidic tail, whereas two G boxes (G4 and G5) were absent in MsRan3A-6a. The physicochemical property of MsRan3A, MsRan3A-1a, MsRan3A-6a, and MsRan3C appeared to differ significantly. Real time quantitative PCR (qPCR) analysis indicates that MsRan3A-1, MsRan3A-5, MsRan3A-6, MsRan3A-6a, and MsRan3C-1 were expressed in roots, leaves, peduncles, bracts, flowers, peels, and pulp of the wild banana. MsRan3A-1a was expressed at extremely low levels in these tissues and was undetectable by qPCR. The MsRan genes were found to be involved in responses to a low temperature stress but with different response patterns. Furthermore, salicylic acid significantly enhanced MsRan gene expressions suggesting the involvement of these genes in salicylic acid signal transduction.  相似文献   

18.
CRISPR assisted homology directed repair enables the introduction of virtually any modification to the Saccharomyces cerevisiae genome. Of obvious interest is the marker-free and seamless introduction of point mutations. To fulfill this promise, a strategy that effects single nucleotide changes while preventing repeated recognition and cutting by the gRNA/Cas9 complex is needed. We demonstrate a two-step method to introduce point mutations at 17 positions in the S. cerevisiae genome. We show the general applicability of the method, enabling the seamless introduction of single nucleotide changes at any location, including essential genes and non-coding regions. We also show a quantifiable phenotype for a point mutation introduced in gene GSH1. The ease and wide applicability of this general method, combined with the demonstration of its feasibility will enable genome editing at an unprecedented level of detail in yeast and other organisms.  相似文献   

19.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

20.
Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号