首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
4.
LBD是植物中所特有的转录因子基因家族,在调控植物侧生组织发育、营养代谢以及响应逆境胁迫等方面具有重要作用。该研究利用生物信息学手段,从全基因组水平筛选和鉴定了蒺藜苜蓿LBD基因家族,并对基因结构、系统进化、进化压力、保守域、染色体定位以及基因表达模式等进行了分析。研究结果共鉴定出2类5亚类共计56个蒺藜苜蓿LBD家族基因,在8条染色体上均有分布,但分布不均匀。该家族成员外显子数目都不超过2个,结构简单,基因间在进化时存在负向选择作用。基因表达模式分析发现,该家族成员的表达具有一定的时空特异性,并受干旱和氮素调控。该研究结果对蒺藜苜蓿LBD基因功能研究及进化分析具有重要的意义。  相似文献   

5.
A large gene family encoding the putative cysteine-rich defensins was discovered in Medicago truncatula. Sixteen members of the family were identified by screening a cloned seed defensin from M. sativa (Gao et al. 2000) against the Institute for Genomic Research’s (TIGR) M. truncatula gene index (MtGI version 7). Based on the comparison of their amino acid sequences, M. truncatula defensins fell arbitrarily into three classes displaying extensive sequence divergence outside of the eight canonical cysteine residues. The presence of Class II defensins is reported for the first time in a legume plant. In silico as well as Northern blot and RT-PCR analyses indicated these genes were expressed in a variety of tissues including leaves, flowers, developing pods, mature seed and roots. The expression of these genes was differentially induced in response to a variety of biotic and abiotic stimuli. For the first time, a defensin gene (TC77480) was shown to be induced in roots in response to infection by the mycorrhizal fungus, Glomus versiforme. Northern blot analysis indicated that the tissue-specific expression patterns of the cloned Def1 and Def2 genes differed substantially between M. truncatula and M. sativa. Furthermore, the induction profiles of the Def1 and Def2 genes in response to the signaling molecules methyl jasmonate, ethylene and salicylic acid differed markedly between these two legumes.  相似文献   

6.
7.
The legume root rot disease caused by the oomycete pathogen Aphanomyces euteiches is one major yield reducing factor in legume crop production. A comparative proteomic approach was carried out in order to identify proteins of the model legume Medicago truncatula which are regulated after an infection with A. euteiches. Several proteins were identified by two dimensional gel electrophoresis to be differentially expressed after pathogen challenge. Densitometric evaluation of expression values showed different regulation during the time-course analysed. Proteins regulated during the infection were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Among the differentially expressed proteins, two encoded putative cell wall proteins and two were designated as small heat shock proteins. Furthermore, an isoform of the chalcone-O-methyltransferase was found to be increased in infected roots. The majority of induced proteins belonged to the family of class 10 of pathogenesis related proteins (PR10). Previously, various PR10-like proteins have been shown to be regulated by general stress or abscisic acid (ABA). Therefore, these proteins were further investigated concerning their regulation in response to drought stress and exogenous ABA-application. Complex regulation patterns were identified: three of the A. euteiches-induced PR10-like proteins were also induced by exogenous ABA- but none of them is induced after drought stress. In contrast, three of these proteins are down-regulated by drought stress. Hence, the strong expression of different PR10-family members and their regulation profiles indicates that this set of proteins plays a major role during root adaptations to various stress conditions.  相似文献   

8.
9.
10.
RING型E3泛素连接酶在植物应答非生物胁迫过程中发挥着重要功能。该研究从圆叶牵牛中克隆出RING型E3泛素连接酶基因PnLOG2,该基因序列号为XM_019321049.1。利用ORF Finder预测PnLOG2基因编码开放阅读框长度为912 bp (51~992 bp),编码313个氨基酸,蛋白分子质量34.38 kD,理论等电点为5.14。系统发育分析表明,PnLOG2基因与番茄亲缘关系最近。组织特异性分析表明,PnLOG2基因在牵牛不同组织均有表达,在老茎和新叶中表达量较高。qRT PCR分析结果表明,PnLOG2基因在圆叶牵牛根和叶中受干旱、盐碱胁迫诱导显著上调表达。通过异源表达PnLOG2基因于酵母细胞中,发现干旱、盐碱胁迫下PnLOG2基因提高了重组酵母的耐盐和耐旱能力,但降低了对碱的耐受性。该研究初步阐明了PnLOG2基因在干旱、盐碱胁迫下的功能,为进一步研究RING型E3泛素连接酶在非生物胁迫中的机理提供了理论依据。  相似文献   

11.
依据NCBI数据库OsPM1的序列信息,采用PCR技术扩增获取OsPM1的2 100bp的启动子序列。利用PLACE预测启动子的顺式作用元件分析表明,启动子内含有大量与胁迫相关的顺式作用元件,主要有ABA响应相关元件、脱水响应元件、低温响应元件、热激响应元件和转录因子结合元件。构建OsPM1的启动子和GUS基因融合表达载体,转入拟南芥。组织化学染色分析结果显示,非生物胁迫处理前,幼苗中GUS基因表达水平很低;干旱、低温、高盐等胁迫处理后,GUS基因表达量显著升高。研究表明,OsPM1的启动子能够显著提高在干旱、高盐和低温处理后下游基因的表达水平。  相似文献   

12.
The symbiosis between legumes and rhizobia results in the development of a new plant organ, the nodule. A role for polar auxin transport in nodule development in Medicago truncatula has been demonstrated using molecular genetic tools. The expression of a DR5::GUS auxin-responsive promoter in uninoculated M. truncatula roots mirrored that reported in Arabidopsis, and expression of the construct in nodulating roots confirmed results reported in white clover. The localization of a root-specific PIN protein (MtPIN2) in normal roots, developing lateral roots and nodules provided the first evidence that a PIN protein is expressed in nodules. Reduced levels of MtPIN2, MtPIN3, and MtPIN4 mRNAs via RNA interference demonstrated that plants with reduced expression of various MtPINs display a reduced number of nodules. The reported results show that in M. truncatula, PIN proteins play an important role in nodule development, and that nodules and lateral roots share some early auxin responses in common, but they rapidly differentiate with respect to auxin and MtPIN2 protein distribution.  相似文献   

13.
14.
Calcium-dependent protein kinases (CDPKs) are unique serine/threonine kinases in plants and there are 34 CDPKs in Arabidopsis genome alone. Although several CDPKs have been demonstrated to be critical calcium signaling mediators for plant responses to various environmental stresses, the biological functions of most CDPKs in stress signaling remain unclear. In this study, we provide the evidences to demonstrate that AtCPK23 plays important role in Arabidopsis responses to drought and salt stresses. The cpk23 mutant, a T-DNA insertion mutant for AtCPK23 gene, showed greatly enhanced tolerance to drought and salt stresses, while the AtCPK23 overexpression lines became more sensitive to drought and salt stresses and the complementary line of the cpk23 mutant displayed similar phenotype as wild-type plants. The results of stomatal aperture measurement showed that the disruption of AtCPK23 expression reduced stomatal apertures, while overexpression of AtCPK23 increased stomatal apertures. The alteration of stomatal apertures by changes in AtCPK23 expression may account, at least in partial, for the modified Arabidopsis response to drought stress. In consistent with the enhanced salt-tolerance by disruption of AtCPK23 expression, K+ content in the cpk23 mutant was not reduced under high NaCl stress compared with wild-type plants, which indicates that the AtCPK23 may also regulate plant K+-uptake. The possible mechanisms by which AtCPK23 mediates drought and salt stresses signaling are discussed.  相似文献   

15.
16.
Yang J  Guo Z 《Plant cell reports》2007,26(8):1383-1390
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. Oxidative cleavage of cis-epoxycarotenoids catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the main regulatory step in the biosynthesis of ABA in higher plants. A NCED gene, SgNCED1, was cloned from the dehydrated leaves of Stylosanthes guianensis. The 2,241-bp full-length SgNCED1 had a 1,809-bp ORF, which encodes a peptide of 602 amino acids. The deduced amino acid sequence of SgNCED1 protein shared high identity with other NCEDs. At the N-terminus of the SgNCED1 located a chloroplast transit peptide sequence. DNA blot analysis revealed that SgNCED1 was a single copy gene in the genome of S. guianensis. The relationship between expression of SgNCED1 and endogenous ABA level was investigated. The expression of SgNCED1 was induced in both leaves and roots of S. guianensis under drought stress. Dehydration and salt stress induced the expression of SgNCED1 strongly and rapidly. The ABA accumulation was coincidently induced with the SgNCED1 mRNA under drought, dehydration and salt stress. The expression of SgNCED1 and ABA accumulation were also induced under chilling condition.  相似文献   

17.
18.
19.
20.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号