首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

It is well known that adenosine plays an important role in inflammatory processes. A collection of adenosine analogs modified in the base and/or sugar functional moiety have been synthesized and submitted for biological testing. Each purine nucleoside analog was tested for inhibition of endothelial cell activation by various inflammatory stimuli. A number of analogs exhibited potent anti-inflammatory activity. Animal studies have been carried out on AMG002370 which was found to potently inhibit adjuvant induced arthritis in the Lewis rat.  相似文献   

2.
Cytokinin activity has been obtained in ethanol extracts of Begonia and Bryophyllum plants. Begonia x cheimantha Everett yielded 30 to 300 μg kinetin equivalents per kg of fresh leaves in the tobacco callus bioassay. Short day conditions appeared to increase the extractable cytokinin content in the tissue. Purification by fractionation on Dowex 50 H+ columns followed by organic solvent extraction, silver precipitation, and repeated paper chromatography yielded an apparently homogeneous product which accounted for most of the activity in the Begonia extracts. It was indistinguishable from zeatin in chromatograms developed with six solvent systems. Other cytokinin active fractions were also obtained from both Begonia and Bryophyllum. Crystalline picrate preparations of active products were insufficient for identification by mass spectrometry.  相似文献   

3.
Cytokinin Activity in Water-stressed Shoots   总被引:17,自引:13,他引:4       下载免费PDF全文
Water stress applied to the plant shoot through enhanced evaporative demands reduced cytokinin activity in extracts of xylem exudate and leaves. This reduction resembled the changes in cytokinin activity caused by water stress applied to the root. Cytokinin activity in detached wilting leaves decreased rapidly. Recovery took place after several hours in a humid chamber. Experiments with 14C-kinetin indicated that the mechanism of the inactivation and its reversal involve a chemical transformation of the cytokinin molecule.  相似文献   

4.
Cytokinin Activity in Lupinus albus   总被引:1,自引:0,他引:1  
The cytokinin content of the root exudate and leaves of fruiting white lupin plants (Lupinus albus L.) was investigated at 2 weekly intervals after anthesis of the lowest flower on the primary inflorescence. Up to 8 weeks after anthesis the level of cytokinins in the root exudate increased. However, at 10 weeks after anthesis insufficient sap was produced for analysis. Cytokinins co-eluting with zeatin and zeatin riboside were detected in the root exudate after fractionation on Sephadex LH-20. The cytokinin levels in the mature leaves steadily increased up to 8 weeks after anthesis and thereafter remained relatively constant. Three peaks of activity, co-eluting with zeatin, zeatin riboside and the glucoside cytokinins were recorded in the leaf extracts. The level of glucoside cytokinins in the leaves was high at 8 and 10 weeks after anthesis. Paper chromatography of extracts of fruits collected at 2 weeks after anthesis indicated that as fruit development proceeded there was a build up of cytokinin in this region of the plant. It is suggested that, in the white lupin, the cytokinins translocated to the shoot are accumulated in the leaves and in the fruits and that it is only later when there is a considerable decrease in sap (10 weeks after anthesis) production that a decreasing supply of cytokinins leads to shoot senescence.  相似文献   

5.
Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.  相似文献   

6.
In exponentially growing cultures of the extreme halophile Halobacterium halobium and the moderate halophile Haloferax volcanii, growth characteristics including intracellular protein levels, RNA content, and nucleotide pool sizes were analyzed. This is the first report on pool sizes of nucleoside triphosphates, NAD, and PRPP (5-phosphoribosyl-α-1-pyrophosphate) in archaea. The presence of a number of salvage and interconversion enzymes was determined by enzymatic assays. The levels varied significantly between the two organisms. The most significant difference was the absence of GMP reductase activity in H. halobium. The metabolism of exogenous purines was investigated in growing cultures. Both purine bases and nucleosides were readily taken up and were incorporated into nucleic acids. Growth of both organisms was affected by a number of inhibitors of nucleotide synthesis. H. volcanii was more sensitive than H. halobium, and purine base analogs were more toxic than nucleoside analogs. Growth of H. volcanii was inhibited by trimethoprim and sulfathiazole, while these compounds had no effect on the growth of H. halobium. Spontaneous mutants resistant to purine analogs were isolated. The most frequent cause of resistance was a defect in purine phosphoribosyltransferase activity coupled with reduced purine uptake. A single phosphoribosyltransferase seemed to convert guanine as well as hypoxanthine to nucleoside monophosphates, and another phosphoribosyltransferase had specificity towards adenine. The differences in the metabolism of purine bases and nucleosides and the sensitivity to purine analogs between the two halobacteria were reflected in differences in purine enzyme levels. Based on our results, we conclude that purine salvage and interconversion pathways differ just as much between the two archaeal species as among archaea, bacteria, and eukarya.  相似文献   

7.
8.
Nitrogen Nutrition and Cytokinin Activity in Solanum tuberosum   总被引:3,自引:0,他引:3  
In water culture experiments with potato plants (Solanum tuberosum L. cv. Ostara), the influence of continuous nitrogen nutrition (constant supply of NO3?) and discontinuous nitrogen nutrition (interruption of NO3? supply, i. e., nitrogen withdrawal for 6 days) on the endogeneous cytokinin level in the roots, shoots and exudate of decapitated plants was studied. Harvests took place at intervals of 3 days. The chlorophyll formation test (cucumber cotyledons) and soya callus test were used to determine the cytokinin activity. With continuous nitrogen, the cytokinin activity decreased slightly with time in both roots and shoots but rose in the exudate. With discontinuous nitrogen, the nitrogen withdrawal led to a temporary, pronounced increase in cytokinin activity in the roots; at the same time, the cytokinin activity in the exudate decreased sharply. It is assumed that this temporary increase in cytokinin activity in the roots is a reflection of increased meristem activity in the roots. In the shoots, the cytokinin activity decreased during the nitrogen withdrawal period. These nitrogen-induced changes in cytokinin activity in the roots and shoots of potato should presumably have an important influence on the physiological age of the shoot, with all its consequences in the further development of the plant. Zeatin riboside was likely the main cytokinin component involved.  相似文献   

9.
In water-culture experiments with potato plants (Solanum tuberosum L. cv. Ostara), the influence of tuberization initiated by a 7-day period of nitrogen withdrawal (discont. N) on the cytokinin activity in shoots, roots and exudate was studied. Plants with a constant supply of nitrogen (cont. N) were used as control. — Whereas no tuberization could be observed with cont. N, discont. N led to tuberization already 2 days after nitrogen withdrawal and all plants had been induced after another 4 days. In the roots of plants with discont. N, there was a temporary increase in cytokinin activity, whereas the activity decreased steadily with cont. N. In the exudate, cytokinin activity was greatly reduced during nitrogen withdrawal, whereas this activity in the exudate increased steadily with cont. N. — In the shoot with cont. N cytokinin activity decreased steadily, but with discont. N, after an initial decrease, the activity increased steeply. This increase is mainly or exclusively caused by a shift between the water-soluble and butanol-soluble fractions of the cytokinins in favour of the latter. The shift in cytokinin activity of the shoot is assumed to be in causal connection with an increased photosynthetic activity after the onset of tuber growth as ‘sink’ for assimilates.  相似文献   

10.
11.
Cytokinin Activity During Development of Cotton Fruit   总被引:3,自引:0,他引:3  
Cytokinins in cotton fruits were detected by the soybean callus bioassay on the 1st day after anthesis. Peak cytokinin activity occurred from the 4th to the 9th day and then declined to little or none by the 18th day after anthesis. The principal cytokinin remained below Rf 0.2, when chromatographed on paper with water-saturated sec-butanol, and predominated throughout the period of cytokinin activity. Another cytokinin, migrating to Rf 0.8, remained less active.  相似文献   

12.
Analogs of cortistatins, a series of anti-angiogenic compounds isolated from the Indonesian marine sponge Cortisium simplex, were synthesized from estrone by using the Suzuki-Miyaura coupling reaction as the key step. The estrone-isoquinoline hybridized compound showed selective inhibitory activity against the proliferation and VEGF-induced migration of HUVEC.  相似文献   

13.
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.Nucleoside hydrolases or nucleoside N-ribohydrolases (NRHs; EC 3.2.2.-) are glycosidases that catalyze the cleavage of the N-glycosidic bond in nucleosides to enable the recycling of the nucleobases and Rib (Fig. 1A). The process by which nucleosides and nucleobases are recycled is also known as salvaging and is a way of conserving energy, which would otherwise be needed for the de novo synthesis of purine- and pyrimidine-containing compounds. During the salvage, bases and nucleosides can be converted into nucleoside monophosphates by the action of phosphoribosyltransferases and nucleoside kinases, respectively, and further phosphorylated into nucleoside diphosphates and triphosphates (Moffatt et al., 2002; Zrenner et al., 2006; Fig. 1B). Uridine kinase and uracil phosphoribosyl transferase are key enzymes in the pyrimidine-salvaging pathway in plants (Mainguet et al., 2009; Chen and Thelen, 2011). Adenine phosphoribosyltransferase and adenosine kinase (ADK) are important in purine salvaging (Moffatt and Somerville, 1988; Moffatt et al., 2002), and their mutants cause reductions in fertility or sterility, changes in transmethylation, and the formation of abnormal cell walls. In addition, both enzymes were also reported to play roles in cytokinin metabolism (Moffatt et al., 1991, 2000; von Schwartzenberg et al., 1998; Schoor et al., 2011). Cytokinins (N6-substituted adenine derivatives) are plant hormones that regulate cell division and numerous developmental events (Mok and Mok, 2001; Sakakibara, 2006). Cytokinin ribosides are considered to be transport forms and have little or no activity.Open in a separate windowFigure 1.A, Scheme of the reactions catalyzed by plant NRHs when using purine (inosine), pyrimidine (uridine), and cytokinin (iPR) ribosides as the substrates. B, Simplified schematic overview of cytokinin, purine, and pyrimidine metabolism in plants. The diagram is adapted from the work of Stasolla et al. (2003) and Zrenner et al. (2006) with modifications. The metabolic components shown are as follows: 1, cytokinin nucleotide phosphoribohydrolase; 2, adenine phosphoribosyltransferase; 3, adenosine kinase; 4, 5′-nucleotidase; 5, adenosine phosphorylase; 6, purine/pyrimidine nucleoside ribohydrolase; 7, cytokinin oxidase/dehydrogenase; 8, AMP deaminase; 9, hypoxanthine phosphoribosyltransferase; 10, inosine kinase; 11, inosine-guanosine phosphorylase; 12, IMP dehydrogenase; 13, xanthine dehydrogenase; 14, 5′-nucleotidase; 15, GMP synthase; 16, hypoxanthine-guanine phosphoribosyltransferase; 17, guanosine deaminase; 18, guanine deaminase; 19, guanosine kinase; 20, uracil phosphoribosyltransferase; 21, uridine cytidine kinase; 22, pyrimidine 5′-nucleotidase; 23, cytidine deaminase; 24, adenosine/adenine deaminase. CK, Cytokinin; CKR, cytokinin riboside; CKRMP, cytokinin riboside monophosphate.NRHs are metalloproteins first identified and characterized in parasitic protozoa such as Trypanosoma, Crithidia, and Leishmania species that rely on the import and salvage of nucleotide derivatives. They have since been characterized in other organisms such as bacteria, yeast, and insects (Versées and Steyaert, 2003) but never in mammals (Parkin et al., 1991). They have been divided into four classes based on their substrate specificity: nonspecific NRHs, which hydrolyze inosine and uridine (IU-NRHs; Parkin et al., 1991; Shi et al., 1999); purine-specific inosine/adenosine/guanosine NRHs (Parkin, 1996); the 6-oxopurine-specific guanosine/inosine NRHs (Estupiñán and Schramm, 1994); and the pyrimidine nucleoside-specific cytidine/uridine NRHs (CU-NRHs; Giabbai and Degano, 2004). All NRHs exhibit a stringent specificity for the Rib moiety and differ in their preferences regarding the nature of the nucleobase. Crystal structures are available for empty NRH or in complex with inhibitors from Crithidia fasciculata (CfNRH; Degano et al., 1998), Leishmania major (LmNRH; Shi et al., 1999), and Trypanosoma vivax (TvNRH; Versées et al., 2001, 2002). The structures of two CU-NRHs from Escherichia coli, namely YeiK (Iovane et al., 2008) and YbeK (rihA; Muzzolini et al., 2006; Garau et al., 2010), are also available. NRHs are believed to catalyze N-glycosidic bond cleavage by a direct displacement mechanism. An Asp from a conserved motif acts as a general base and abstracts a proton from a catalytic water molecule, which then attacks the C1′ atom of the Rib moiety of the nucleoside. Kinetic isotope-effect studies on CfNRH (Horenstein et al., 1991) showed that the substrate’s hydrolysis proceeds via an oxocarbenium ion-like transition state and is preceded by protonation at the N7 atom of the purine ring, which lowers the electron density on the purine ring and destabilizes the N-glycosidic bond. A conserved active-site His is a likely candidate for this role in IU-NRHs and CU-NRHs. In the transition state, the C1′-N9 glycosidic bond is almost 2 Å long, with the C1′ atom being sp2 hybridized while the C3′ atom adopts an exo-conformation, and the whole ribosyl moiety carries a substantial positive charge (Horenstein et al., 1991).Several NRH enzymes have been identified in plants, including a uridine-specific NRH from mung bean (Phaseolus radiatus; Achar and Vaidyanathan, 1967), an inosine-specific NRH (EC 3.2.2.2) and a guanosine-inosine-specific NRH, both from yellow lupine (Lupinus luteus; Guranowski, 1982; Szuwart et al., 2006), and an adenosine-specific NRH (EC 3.2.2.7) from coffee (Coffea arabica), barley (Hordeum vulgare), and wheat (Triticum aestivum; Guranowski and Schneider, 1977; Chen and Kristopeit, 1981; Campos et al., 2005). However, their amino acid sequences have not been reported so far. A detailed study of the NRH gene family from Arabidopsis (Arabidopsis thaliana) has recently been reported (Jung et al., 2009, 2011). The AtNRH1 enzyme exhibits highest hydrolase activity toward uridine and xanthosine. It can also hydrolyze the cytokinin riboside N6-(2-isopentenyl)adenosine (iPR), which suggests that it may also play a role in cytokinin homeostasis. However, Riegler et al. (2011) analyzed the phenotypes of homozygous nrh1 and nrh2 single mutants along with the homozygous double mutants and concluded that AtNRHs are probably unimportant in cytokinin metabolism.Here, we identify and characterize plant IU-NRHs from two different model organisms, Physcomitrella patens and maize (Zea mays), combining structural, enzymatic, and in planta functional approaches. The moss P. patens was chosen to represent the bryophytes, which can be regarded as being evolutionarily basal terrestrial plants, and is suitable for use in developmental and metabolic studies (Cove et al., 2006; von Schwartzenberg, 2009), while maize is an important model system for cereal crops. We report the crystal structures of NRH enzymes from the two plant species, PpNRH1 and ZmNRH3. Based on these structures, we performed site-directed mutagenesis experiments and kinetic analyses of point mutants of PpNRH1 in order to identify key residues involved in nucleobase interactions and catalysis. To analyze the physiological role of the PpNRHs, single knockout mutants were generated. NRH deficiency caused significant changes in the levels of purine, pyrimidine, and cytokinin metabolites relative to those seen in the wild type, illustrating the importance of these enzymes in nucleoside and cytokinin metabolism.  相似文献   

14.
15.
The biennial 15th symposium on Purine and Pyrimidine metabolism was held in Madrid, June 2013 (PP13). During the meeting, several novel developments on the diagnosis, pathophysiology, and treatment of several inborn errors of purine and pyrimidine metabolism were presented. These ranged from new drugs for gout to enzyme replacement therapies for mitochondrial diseases. A relatively novel aspect in this meeting was the interest in purine and pyrimidine metabolism in nonmammalian systems, such as parasites, mycoplasms, and bacteria. Development of novel analogs for parasite infections, cardiovascular diseases, inflammatory diseases, and cancer were also discussed.  相似文献   

16.
SYNOPSIS Eighty-four purine and pyrimidine analogs were evaluated for growth inhibition of Tetrahymena pyriformis. The most toxic were 2-fluoroadenine, 2-fluoroadenosine, 6-methylpurine, a series of 5-fluoropyrimidines, and a series of adenine derivatives substituted in the 9-position. 2-Fluoroadenine was metabolized to the ribonucleoside triphosphate and was incorporated into nucleic acids; its inhibition of growth was reversed by high levels of adenine. 6-Methylthiopurine ribonucleoside was phosphorylated, but only to the monophosphate derivative. Contrasting T. pyriformis with mammalian cells gave clues to the mechanism of action of some of the agents. 6-Mercaptopurine, 6-methylthiopurine ribonucleoside, and 6-thioguanine, all potent pseudofeedback inhibitors of de novo purine biosynthesis in mammalian cells, are not toxic to T. pyriformis, which lacks the de novo purine pathway; this implies that inhibition of de novo purine biosynthesis by them underlies their growth inhibition of mammalian cells.  相似文献   

17.
A first microwave-assisted synthesis of a new class of novel purine thioglycoside analogs from readily available starting materials has been described. The key step of this protocol is the formation of sodium pyrazolo[1,5-a]pyrimidine-7-thiolate and 7-mercaptopyrazolo[1,5-a]pyrimidine derivatives via condensation of 5-amino-1H-pyrazoles with sodium 2,2-dicyanoethene-1,1-bis(thiolate) salts or 2-(dimercaptomethylene)malononitrile, respectively, under microwave irradiation, followed by coupling with halo sugars to give the corresponding purine thioglycoside analogs. The obtained purines and purines thioglycosides derivatives were evaluated in vitro against lung (A549), colon (HCT116), liver (HEPG2), and prostate (PC3) cancer cell lines. Some of these compounds (5b, 5d, 5f, and 9a–d) exhibited little potency toward the four cell lines. On the other hand, compound 5a elicited higher cytotoxicity on both prostate (PC3) and colon (HCT116), respectively, while it was found moderate on lung (A549), and inactive on liver (HEPG2). Moreover, compound 5c was found moderate with LC50 values 52.0–88.9 μM for almost all the cell lines.  相似文献   

18.
利用不同的芳香醛和乙酰丙酮缩合反应,合成了4种姜黄素类似物(A1~A4),化合物的结构经IR1、HNMR及MS等测试技术表征确证。采用邻苯三酚法研究化合物的体外抗氧化活性,台盼蓝细胞计数法研究体外抗肿瘤活性。结果表明,化合物A1、A2、A3的抗氧化活性和对K562细胞增殖的抑制活性均高于姜黄素,其活性与酚羟基密切相关。  相似文献   

19.
Purine Analogue Sensitivity and Lipase Activity of Leptospires   总被引:4,自引:1,他引:3       下载免费PDF全文
The genus Leptospira can be divided into three groups based on purine analogue sensitivity and lipase (trioleinase) activity. Group 1 contains members of the “parasitic complex” of leptospires which initially cannot grow in media containing 10 μg of 2,6-diaminopurine (DAP) per ml or 200 μg of 8-azaguanine per ml. In addition, leptospires in this group possess lipase activity. Group 2 also contains members of the “parasitic complex” of leptospires. Although these leptospires are similarly sensitive to 8-azaguanine, they differ from group 1 leptospires in that they grow in media containing 10 μg of DAP per ml, and they do not possess detectable lipase activity. Group 3 consists of leptospires belonging to the “biflexa complex.” These leptospires are resistant to both purine analogues and have lipase activity.  相似文献   

20.
The sequential hydrolysis of purines is present in rat CSF and generates nucleosides as inosine and guanosine that are usual substrates for purine nucleoside phosphorylase (PNP). PNP catalyzes phosphorolysis of the purine nucleosides and deoxynucleosides releasing purine bases. Here we investigated the presence of PNP in CSF of rats using: i) a specific chromophoric analogue of nucleosides, 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG), and ii) an inhibitor of PNP activity, immucillin-H. Additionally, we performed a preliminary kinetic characterization (K(M): Henry-Michaelis-Menten constant; V: maximal velocity) for MESG and inorganic phosphate (Pi). The values of K(M) and V for MESG (n = 3, mean+/-SD) were 142.5+/-29.5 microM and 0.0102+/-0.0006 U mg(-1), respectively. For Pi (n=3, mean+/-SD), the K(M) values and V were 186.8+/-43.7 microM and 0.0104+/-0.0016 U mg(-1), respectively. The results indicated that PNP is present in rat CSF and provided a preliminary kinetic characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号