首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistin is an adipocytokine which plays a role in the development of insulin resistance. In this study, we investigated the direct effect of resistin on vascular endothelial cells. Resistin induced the expression of adhesion molecules such as VCAM-1 and ICAM-1, and long pentraxin 3, a marker of inflammation. The induction of VCAM-1 by resistin was inhibited partially by pitavastatin. Moreover, the induction of VCAM-1 and ICAM-1 by resistin was inhibited by adiponectin, an adipocytokine that improves insulin resistance. Taken together, these results suggest that the balance in the concentrations of adipocytokines such as resistin and adiponectin determines the inflammation status of vasculature, and in turn the progress of atherosclerosis.  相似文献   

2.
Jun HJ  Chung MJ  Kim SY  Lee HJ  Lee SJ 《Biotechnology letters》2006,28(22):1805-1810
Monocyte adhesion to vascular endothelium is an initial step in atherogenesis. To quantify this, we incubated monocytes with cultured endothelial cells, and quantified the adhered live monocytes using a colorimetric assay. Endothelium activated with lipopolysaccharide attracted monocytes in a dose-dependent manner and the adhesion was attenuated with post-treatments with l-ascorbic acid (53%), α- (40%) and γ-tocopherol (39%), resveratrol (39%), and Lithospermum erythrorhizon root extract (45%). This non-radioactive, colorimetric assay may be useful for screening anti-atherogenic compounds in early atherogenesis.  相似文献   

3.
Summary Endothelial lesion by oxidized low-density liproproteins (LDL) is one of the first stages in the development of atherosclerosis. The effect of these lipoproteins can range from a functional lesion of the endothelium to death of the endothelial cells by apoptosis. High-density lipoproteins (HDL) are one of the factors which can have a protective effect against the development of atheromatous plaques. The aim of this study is to establish whether the death of endothelial cells by apoptosis induced by oxidized LDLs is prevented by HDLs. ECV304 endothelial cells and bovine aorta endothelial cells were incubated with native LDLs, oxidized LDLs, and a combination of both oxidized LDLs and HDLs. Oxidized LDLs caused a significant increase of mortality mainly by apoptosis. However, when HDLs were added together with oxidized LDLs the percentage of total mortality, the degree of lipoprotein oxidation in the medium, and the percentage of cells in apoptosis were all significantly decreased. HDLs protect against the cytotoxicity of oxidized LDLs possibly by preventing the propagation of the oxidative chain in these lipoproteins.Abbreviations LDL low-density lipoproteins - HDL high-density lipoproteins - BAEC bovine aortic endothelial cell - TBARS thiobarbituric acid-reactive substances  相似文献   

4.
Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE(-/-)) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE(441)) and aggrecan ((374)ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE(441) versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.  相似文献   

5.
Vascular endothelium in atherosclerosis   总被引:1,自引:0,他引:1  
Their strategic location between blood and tissue and their constitutive properties allow endothelial cells (EC) to monitor the transport of plasma molecules, by employing bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis, and to regulate vascular tone, cellular cholesterol and lipid homeostasis. These cells are also involved in signal transduction, immunity, inflammation and haemostasis. Cardiovascular risk factors, such as hyperlipaemia/dyslipidaemia trigger the molecular machinery of EC to respond to insults by modulation of their constitutive functions followed by dysfunction and ultimately by injury and apoptosis. The gradual activation of EC consists initially in the modulation of two constitutive functions: (1) permeability, i.e. increased transcytosis of lipoproteins, and (2) biosynthetic activity, i.e. enhanced synthesis of the basement membrane and extracellular matrix. The increased transcytosis and the reduced efflux of β-lipoproteins (βLp) lead to their retention within the endothelial hyperplasic basal lamina as modified lipoproteins (MLp) and to their subsequent alteration (oxidation, glycation, enzymatic modifications). MLp generate chemoattractant and inflammatory molecules, triggering EC dysfunction (appearance of new adhesion molecules, secretion of chemokines, cytokines), characterised by monocyte recruitment, adhesion, diapedesis and residence within the subendothelium. In time, EC in the athero-prone areas alter their net negative surface charge, losing their non-thrombogenic ability, become loaded with lipid droplets and turn into foam cells. Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC. As a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.  相似文献   

6.
Caveolae are abundant surface pits formed by the assembly of cytoplasmic proteins on a platform generated by caveolin integral membrane proteins and membrane lipids. This membranous assembly can bud off into the cell or can be disassembled releasing the cavin proteins into the cytosol. Disassembly can be triggered by increased membrane tension, or by stress stimuli, such as UV. Here, we discuss recent mechanistic studies showing how caveolae are formed and how their unique properties allow them to function as multifunctional protective and signaling structures.  相似文献   

7.
The incidence of diseases characterized by a dysregulation of lipid metabolism such as obesity, diabetes and atherosclerosis is rising at alarming rates, driving research to uncover new therapies to manage dyslipidemias and resolve the metabolic syndrome conundrum. Autophagy and lipid homeostasis – both ancient cellular pathways – have seemingly co-evolved to share common regulatory elements, and autophagy has emerged as a prominent mechanism involved in the regulation of lipid metabolism. This review highlights recent findings on the role of autophagy in the regulation of cellular cholesterol homeostasis and lipoprotein metabolism, with special emphasis on macrophages. From modulation of inflammation to regulation of cellular cholesterol levels, a protective role for autophagy in atherosclerosis is emerging. The manipulation of autophagic activity represents a new possible therapeutic approach for the treatment complex metabolic disorders such as obesity and the metabolic syndrome.  相似文献   

8.
Caveolae transcytosis with its diverse mechanisms-fluid phase, adsorptive, and receptor-mediated-plays an important role in the continuous exchange of molecules across the endothelium. We will discuss key features of endothelial transcytosis and caveolae that have been studied recently and have increased our understanding of caveolae function in transcytosis at the molecular level. During transcytosis, caveolae "pinch off" from the plasma membrane to form discrete vesicular carriers that shuttle to the opposite front of endothelial cells, fuse with the plasma membrane, and discharge their cargo into the perivascular space. Endothelial transcytosis exhibits distinct properties, the most important being rapid and efficient coupling of endocytosis to exocytosis on opposite plasma membrane. We address herein the membrane fusion-fission reactions that underlie transcytosis. Caveolae move across the endothelial cells with their cargo predominantly in the fluid phase through an active process that bypasses the lysosomes. Endothelial transcytosis is a constitutive process of vesicular transport. Recent studies show that transcytosis can be upregulated in response to pathological stimuli. Transcytosis via caveolae is an important route for the regulation of endothelial barrier function and may participate in different vascular diseases.  相似文献   

9.
10.
11.
This study addressed the question how different lipoproteins modulate the expression of endothelin-converting enzyme-1 (ECE-1) in human endothelial cells. The effect of native and oxidized low-density lipoproteins (nLDL, oxLDL) on expression of ECE-1, prepro-endothelin-1, and endothelin-1 peptide was studied in primary cultures of human endothelial cells. Native and oxidized LDL increased ECE-1 mRNA after 1 h, reaching its maximum at 100 microg/ml (1.9- and 2.5-fold, respectively). Furthermore, ECE-1 protein expression, prepro-endothelin-1 mRNA, and endothelin-1 peptide release were increased in response to nLDL or oxLDL. Induction of ECE-1 by nLDL and of prepro-endothelin-1 by oxLDL was reduced by protein kinase C inhibition. Increased expression of ECE-1 mRNA by oxLDL and of prepro-endothelin-1 by nLDL was blocked by an angiotensin II receptor type 1 antagonist. Our data provide evidence for a new mechanism how increased LDL plasma levels might contribute to enhanced endothelin-1 release in patients with hypercholesterolemia.  相似文献   

12.
Endothelial transcytosis in health and disease   总被引:1,自引:0,他引:1  
The visionaries predicted the existence of transcytosis in endothelial cells; the cell biologists deciphered its mechanisms and (in part) the molecules involved in the process; the cell pathologists unravelled the presence of defective transcytosis in some diseases. The optimistic perspective is that transcytosis, in general, and receptor-mediated transcytosis, in particular, will be greatly exploited in order to target drugs and genes to exclusive sites in and on endothelial cells (EC) or underlying cells. The current recognition that plasmalemmal vesicles (caveolae) are the vehicles involved in EC transcytosis has moved through various phases from intial considerations of caveolae as unmovable sessile non-functional plasmalemma invaginations to the present identification of a multitude of molecules and a crowd of functions associated with these ubiquitous structures of endothelial and epithelial cells. Further understanding of the molecular machinery that precisely guides caveolae through the cells so as to reach the target membrane (fission, docking, and fusion), to avoid lysosomes, or on the contrary, to reach the lysosomes, and discharge the cargo molecules will assist in the design of pathways that, by manipulating the physiological route of caveolae, will carry molecules of choice (drugs, genes) at controlled concentrations to precise destinations.  相似文献   

13.
High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA1-mediated generation of a lipidated particle which is then transported by ABCA1-independent pathways. To test this hypothesis we analyzed the endothelial binding and transport properties of initially lipid-free as well as prelipidated apoA-I mutants. Lipid-free apoA-I mutants with a defective carboxyl-terminal domain showed an 80% decreased specific binding and 90% decreased specific transport by aortic endothelial cells. After prior cell-free lipidation of the mutants, the resulting HDL-like particles were transported through endothelial cells by an ABCG1- and SR-BI-dependent process. ApoA-I mutants with deletions of either the amino terminus or both the amino and carboxyl termini showed dramatic increases in nonspecific binding but no specific binding or transport. Prior cell-free lipidation did not rescue these anomalies. Our findings of stringent structure-function relationships underline the specificity of transendothelial apoA-I transport and suggest that lipidation of initially lipid-free apoA-I is necessary but not sufficient for specific transendothelial transport. Our data also support the model of a two-step process for the transendothelial transport of apoA-I in which apoA-I is initially lipidated by ABCA1 and then further processed by ABCA1-independent mechanisms.  相似文献   

14.
Increased arterial endothelial cell permeability (ECP) is considered an initial step in atherosclerosis. Atrial natriuretic peptide (ANP) which is rapidly degraded by neprilysin (NEP) may reduce injury-induced endothelial cell leakiness. Omapatrilat represents a first in class of pharmacological agents which inhibits both NEP and angiotensin converting enzyme (ACE). We hypothesized that ANP prevents thrombin-induced increases of ECP in human aortic ECs (HAECs) and that omapatrilat would reduce aortic leakiness and atherogenesis and enhance ANP mediated vasorelaxation of isolated aortas. Thrombin induced ECP determined by I125 albumin flux was assessed in HAECs with and without ANP pretreatment. Next we examined the effects of chronic oral administration of omapatrilat (12 mg/kg/day, n = 13) or placebo (n = 13) for 8 weeks on aortic leakiness, atherogenesis and ANP-mediated vasorelaxation in isolated aortas in a rabbit model of atherosclerosis produced by high cholesterol diet. In HAECs, thrombin-induced increases in ECP were prevented by ANP. Omapatrilat reduced the area of increased aortic leakiness determined by Evans-blue dye and area of atheroma formation assessed by Oil-Red staining compared to placebo. In isolated arterial rings, omapatrilat enhanced vasorelaxation to ANP compared to placebo with and without the endothelium. ANP prevents thrombin-induced increases in ECP in HAECs. Chronic oral administration of omapatrilat reduces aortic leakiness and atheroma formation with enhanced endothelial independent vasorelaxation to ANP. These studies support the therapeutic potential of dual inhibition of NEP and ACE in the prevention of increased arterial ECP and atherogenesis which may be linked to the ANP/cGMP system.  相似文献   

15.
It has been previously reported that the plasma levels of autoantibodies against heat shock protein 70 (HSP70) are elevated in atherosclerosis. The aim of the present study was to elucidate whether anti-HSP70 antibodies are involved in the pathogenesis of atherosclerosis. To determine this, we chose rats as an atherosclerosis model. Titers of plasma anti-HSP70 autoantibody were determined by ELISA. After the intravenous administration of antibody into the tail, the damaged areas of aorta were stained with Evans Blue, atheromatous plaque were stained by Oil Red O, and then they were measured and quantified with AxioVision computer software. The number of macrophages ( $ {{\hbox{M}}_\Phi } $ ), smooth muscle cells (SMCs), and T cells were determined by immunocytochemistry. The level of anti-HSP70 IgG1 antibody was apparently increased in the AS group at the tenth week, and one hybridoma of HSP70 antibody (BD091, IgG1, recognizing C-terminal) had the same binding epitope as plasma anti-HSP70 autoantibodies. After intravenous administration, the lesion area of aorta with BD091 was significantly larger than those of IgGmouse and SPA-810. Moreover, injection of BD091 resulted in significant endothelium damage, followed by a greater accumulation of $ {{\hbox{M}}_\Phi } $ , T cells, and SMCs in lesions than in the control. In conclusion, BD091 reaction with HSP70 expressed on arterial endothelial cells inducing endothelium damage triggers the inflammatory response in the vessel wall that accelerates atherosclerosis in rats. BD091 shares the same binding epitope with HSP70 autoantibodies. These data indicated that a specific epitope of anti-HSP70 autoantibody participated in the pathogenesis of atherosclerosis.  相似文献   

16.
17.
15 lipoxygenase (15LO) is a lipid-oxidizing enzyme that is considered to contribute to the formation of oxidized lipids in atherosclerotic lesions. Monocyte-macrophages are the key cells that express 15LO in atherosclerotic lesions. In this review, we examine the evidence for 15LO involvement in atherogenesis and explore and evaluate the potential mechanisms whereby 15LO may contribute to the oxidation of LDL by monocyte-macrophages. We also describe several possible pro- versus anti-atherogenic functions that may be mediated by various products of 15LO lipid oxidation. Central pathways involved in regulating 15LO expression and activity that may serve as future targets for intervention and regulation of this enzyme are also reviewed.  相似文献   

18.
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.  相似文献   

19.
The fibroblast-like synoviocyte is a CD13-positive cell-type containing numerous caveolae, both single and interconnected clusters. In unstimulated cells, all single caveolae at the cell surface and the majority of those localized deeper into the cytoplasm were freely accessible from the medium, as judged from electron microscopy of synoviocytes exposed to the membrane impermeable marker Ruthenium Red. Caveolar internalization could be induced by a CD13 antibody or by cholera toxin B subunit (CTB). Thus, in experiments using sequential labeling with Alexa 488- and 594-conjugated CTB, about 50% of CTB-positive caveolae were internalized by 5 min of chase, and these remained inaccessible from the cell surface for periods up to 24 h. No colocalization with an endosomal marker, EEA1, or Lysotracker was observed, indicating that internalized caveolae clusters represent a static compartment. Vimentin was identified as the most abundant protein in detergent resistant membranes (DRM’s), and by immunogold electron microscopy caveolae were seen in intimate contact with intermediate-size filaments. These observations indicate that vimentin-based filaments are responsible for the spatio-temporal fixation of caveolae clusters. RECK, a glycosylphosphatidylinositol-anchored protein acting as a negative regulator of cell surface metalloproteinases, was also localized to the caveolae clusters. We propose that these clusters function as static reservoirs of specialized lipid raft domains where proteins involved in cell–cell interactions, such as CD13, can be sequestered by binding to RECK in a regulatory manner.  相似文献   

20.
Although previous studies have shown that autoantigens such as Hsps have been implicated by induction of an autoimmune process in the development of atherosclerosis, the exact role of anti-Hsp70 antibody in atherosclerosis is unknown. In the present study, the levels of anti-Hsp70 autoantibodies and oxidized low density lipoprotein (OxLDL) were all significantly increased, and they were strongly correlated in an atherosclerosis model. After the endothelial cells were incubated with 20 μg/mL OxLDL for 12 h at 37 °C and followed by 90 min recovery, Hsp70 positive staining of OxLDL-treated endothelial cells was observed on the cell surface in immunostaining and flow cytometric analysis. This membrane Hsp70 was not from culture supernatant Hsp70 and binding of extracellular Hsp70 but was defined as endothelial surface membrane Hsp70. Furthermore, only in the OxLDL-treated group, but not in the untreated group, 51Cr-labeled endothelial cells were lysed by anti-Hsp70 antibody (BD091, IgAS) in the presence of either complement or peripheral blood mononuclear cells. Control antibodies, including IgNor, mAb to Hsp70 (SPA-810), and mAbs to Factor VIII, α-actin, and CD3 showed no cytotoxic effects. In conclusion, anti-Hsp70 antibodies could be reacting with the endothelial surface membrane Hsp70 induced by OxLDL and were able to mediate endothelial cytotoxicity. There is a possibility that a humoral immune reaction to endothelial surface membrane Hsp70 may play an important role in the pathogenesis of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号