首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ethanol is identified as a strongly inhibitory metabolite in addition to acetic acid and 2,3-butanediol in 2,3-butanediol production by Enterobacter aerogenes. A model is proposed to describe the multiproduct-inhibited growth of E. aerogenes in 2,3-butanediol fermentation. The model is verified with data from anaerobic and microaerobic continuous culture. On the basis of this model the difference in biomass production and product patterns during anaerobic and microaerobic growth of E. aerogenes is discussed. Offprint requests to: W.-D. Deckwer  相似文献   

2.
2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.  相似文献   

3.
Bioprocess and Biosystems Engineering - Bioconversion of biodiesel-derived glycerol into 2,3-butanediol has received recently much attention due to its increasing surplus and its multiple uses in...  相似文献   

4.
Summary The effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes from glucose was investigated in a microaerobic continuous culture. At a dilution rate of 0.20 h–1 and a fixed oxygen uptake rate (OUR) of 31.5 mmol l–1 h–1 the biomass concentration increased with pH ranging from 5.0 to 7.0, while the specific ATP requirement of the cells decreased. In the pH range 5.5–6.5 the product concentration (butanediol + acetoin) was maximal and nearly constant. However, the specific production continuously declined with increasing pH. Experiments with addition of acetic acid showed that the various effects of pH are due to inhibition of the by-product acetic acid on cell growth. The strength of the acetic and inhibition depended only on the concentration of its undissociated form [HAc]. The biomass concentration and the specific OUR were also only functions of [HAc], irrespective of the pH. Although the specific ATP requirement (q ATP) strongly depended on the pH, [HAc] at constant pH. Offprint requests to: W.-D. Deckwer  相似文献   

5.
Stirred tank (STR), bubble column (BCR) and airlift (ALR) bioreactors of 0.05 and 1.5 m3 total volume were compared for the production of 2,3-butanediol using Enterobacter aerogenes under microaerobic conditions. Batch fermentations were carried out at constant oxygen transfer rate (OTR=35 mmol/lh). At 0.05 m3 scale, the STR reactor achieved much higher biomass and product concentrations than the BCR and ALR reactors. At 1.5 m3 scale, however, exactly the same biomass and product concentrations could be obtained in both STR and ALR reactors. The 1.5 m3 ALR reactor performed also much better than its counterpart at small scale, achieving a productivity 2.4-fold as high as that of the 0.05 m3 BCL and ALR reactors. No differences in performances were observed between BCR and ALR. As compared to STR the tower reactors have a 12 time higher energetic efficiency (referred to product formation) and thus should be the choice for large scale production of 2,3-butanediol.The criterion of constant OTR or constant k L a is not applicable for the scale-up of this oxygen-sensitive culture due to strong influence of reactor hydrodynamics under microaerobic conditions. The effects of mixing and circulation time on growth and metabolism of E. aerogenes were quantitatively studied in scaled-down experiments with continuous culture. For a successful scale-up of this microaerobic culture it is necessary to have an homogeneous oxygen supply over the entire reactor volume. Under conditions of inhomogeneous oxygen supply an optimum liquid circulation time exists which gives a maximum production of 2,3-butanediol.List of Symbols BD 2,3-butanediol - [mmol/l] saturation value of dissolved oxygen - D [h–1] dilution rate - D [mm] reactor diameter - D K [mm] top section diameter - D R [mm] stirrer diameter - D S [mm] draft tube diameter - EtOH ethanol - E P [kg/kWh] energy efficiency refered to product formation - H [mm] height of reactor - HAc acetate - H L [mm] height of liquid - k L a [h–1] volumetric oxygen transfer coefficient - N [rpm=min–1] stirrer speed - OTR [mmol/lh] oxygen transfer rate - OUR [mmol/lh] oxygen uptake rate - p [Pa] pressure - P [kW] power input - P/V L [kW/m3] specific power input - [mmHg] oxygen partial pressure (mmHg) or - [mmol/l] dissolved oxygen (mmol/l) - [mmol/gh] specific oxygen uptake rate - q P [mmol/gh] specific productivity - R [Nm/kgK] gas constant, R = 287.06 - RQ respiration quotient - t c [s] liquid circulation time - T [°C or K] temperature - TCA tricarboxylic acid - u G [cm/s] mean superficial gas velocity - v G [m/s] gas velocity at nozzels of gas distributor - VG [l/h] aeration rate at inlet - V [m3 or l] total volume - V L [m3 or l] liquid volume - V N [l/mol] gas mole volume under normal conditions, V N = 24.4116 - X [g/l] biomass concentration - CO2 mole fraction in the effluent gas - O2 mole fraction in the effluent gas - inlet (above the gas distributor) - ratio of oxygen consumed through TCA cycle to the total oxygen uptake rate - [g/l or kg/m3] density - [%] degree homogeneity - outlet of fermenter or top of the dispersion phase Dedicated to the 65th birthday of Professor Fritz Wagner.We thank Dr. C. Posten and T. Gabel for support with the computer control system UBICON. T.-G. Byun gratefully acknowledges financial support by DAAD.  相似文献   

6.
Summary High glucose concentrations result in high levels of 2,3-butanediol, improved yield and productivity, and a decrease in cell growth in batch cultures of Klebsiella oxytoca. A maximum of 84.2 g butanediol/l and a yield of 0.5 was obtained with an initial glucose concentration of 262.6g/l. Adding the substrate in two steps in a modified fed-batch operation resulted in 85.5 g butanediol/l, 6.4 g acetoin/l and 3.4 g ethanol/l with a net yield of 0.5. Increasing the cell density to 60g/l resulted in productivities as high as 3.22 g/l.h.  相似文献   

7.
2,3-Butanediol (2,3-BD) is a major metabolite produced by Klebsiella pneumoniae KCTC2242, which is a important chemical with wide applications. Three genes important for 2,3-BD biosynthesis acetolactate decarboxylase (budA), acetolactate synthase (budB), and alcohol dehydrogenase (budC) were identified in K. pneumoniae genomic DNA. With the goal of enhancing 2,3-BD production, these genes were cloned into pUC18K expression vectors containing the lacZ promoter and the kanamycin resistance gene to generate plasmids pSB1-7. The plasmids were then introduced into K. pneumoniae using electroporation. All strains were incubated in flask experiments and 2,3-BD production was increased by 60% in recombinant bacteria harboring pSB04 (budA and budB genes), compared with the parental strain K. pneumoniae KCTC2242. The maximum 2,3-BD production level achieved through fedbatch fermentation with K. pneumoniae SGJSB04 was 101.53 g/l over 40 h with a productivity of 2.54 g/l.h. These results suggest that overexpression of 2,3-BD synthesisrelated genes can enhance 2,3-BD production in K. pneumoniae by fermentation.  相似文献   

8.
P1-sensitive mutants of Klebsiella aerogenes were isolated and the gene order of the hut region was then determined using P1-mediated transduction. The genes are located in the Klebsiella chromosome between gal and bio as in Salmonella typhimurium. The gene order, gal, hutI, hutG, hutC, huU, hutH, bio is also the same as that observed in S. typhimurium.  相似文献   

9.
Histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes were purified to homogeneity and compared with the histidine decarboxylase from Morganella morganii. All three enzymes required pyridoxal 5'-phosphate as a coenzyme, showed optimal activity at pH 6.5, decarboxylated only histidine among the amino acids derived from protein, and were tetramers or dimers of identical subunits. Amino-terminal sequences of the three enzymes showed up to 81% homology through residue 33, but the enzymes differed sufficiently in amino acid composition and sequence so that no cross-reaction occurred between the K. planticola or E. aerogenes enzymes and antibodies to the decarboxylase from M. morganii. All three enzymes were inhibited by carbonyl reagents; by amino-, carboxyl-, and some methyl-substituted histidines; and by alpha-fluoromethylhistidine. These decarboxylases, all from gram-negative organisms, differed greatly in subunit structure, biogenesis, and other properties from the pyruvoyl-dependent histidine decarboxylases from gram-positive organisms described previously.  相似文献   

10.
Production of 2,3-butanediol by newly isolated Enterobacter cloacae   总被引:2,自引:0,他引:2  
Enterobacter cloacae NRRL B-23289 was isolated from local decaying wood/corn soil samples while screening for microorganisms for conversion of l-arabinose to fuel ethanol. The major product of fermentation by the bacterium was meso-2,3-butanediol (2,3-BD). In a typical fermentation, a BD yield of 0.4 g/g arabinose was obtained with a corresponding productivity of 0.63 g/l per hour at an initial arabinose concentration of 50 g/l. The effects of initial arabinose concentration, temperature, pH, agitation, various monosaccharides, and multiple sugar mixtures on 2,3-BD production were investigated. BD productivity, yield, and byproduct formation were influenced significantly within these parameters. The bacterium utilized sugars from acid plus enzyme saccharified corn fiber and produced BD (0.35 g/g available sugars). It also produced BD from dilute acid pretreated corn fiber by simultaneous saccharification and fermentation (0.34 g/g theoretical sugars). Received: 17 December 1998 / Revision received: 9 March 1999 / Accepted: 20 March 1999  相似文献   

11.
Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724   总被引:1,自引:0,他引:1  
It is known that 2,3-butanediol is a potentially valuable chemical feedstock that can be produced from the sugars present in hemicellulose and celluose hydrolysates. Klebsiella oxytoca is able to ferment most pentoses, hexoses, and disaccharides. Butanediol appears to be a primary metabolite, excreted as a product of energy methabolism. The theoretical maximum yield of butanediol from monosaccharides is 0.50 g/g. This article describes the effects of pH, xylose concentration, and the oxygen transfer rate on the bioconversion of D-xylose to 2,3-butanediol. Product inhibition by butanediol is also examined. The most important variable affecting the kinetics of this system appears to be the oxygen transfer rate. A higher oxygen supply favors the formation of cell mass at the expense of butanediol. Decreasing the oxygen supply rate increases the butanediol yield, but decreases the overall conversion rate due to a lower cell concentration.  相似文献   

12.
The normal hut (histidine utilization) operons, as well as those with mutations affecting the regulation of their expression, of Salmonella typhimurium were introduced on an F' episome into cells of S. typhimurium and Klebsiella aerogenes whose chromosomal hut genes had been deleted and into cells of Escherichia coli, whose chromosome does not carry hut genes. The episomal hut operons respond in a manner very similar to induction and catabolite repression in all three organisms. The small differences found reflect both different abilities to take up inducers from the medium and different degrees of catabolite repression exerted by glucose.  相似文献   

13.
 Urease possesses a dinuclear Ni active site with the protein providing a bridging carbamylated lysine residue as well as an aspartyl and four histidyl ligands. The apoprotein can be activated in vitro by incubation with bicarbonate/CO2 and Ni(II); however, only ∼15% forms active enzyme (Ni-CO2-ureaseA), with the remainder forming inactive carbamylated Ni-containing protein (Ni-CO2-ureaseB). In the absence of CO2, apoprotein plus Ni(II) forms a distinct inactive Ni-containing species (Ni-urease). The studies described here were carried out to better define the metal-binding sites for the inactive Ni-urease and Ni-CO2-ureaseB species, and to examine the properties of various forms of Co-, Mn-, and Cu-substituted ureases. X-ray absorption spectroscopy (XAS) indicated that the two Ni atoms present in the Ni-urease metallocenter are coordinated by an average of two histidines and 3–4 N/O ligands, consistent with binding to the usual enzyme ligands with the lysine carbamate replaced by solvent. Neither XAS nor electronic spectroscopy provided evidence for thiolate ligation in the inactive Ni-containing species. By contrast, comparative studies of Co-CO2-urease and its C319A variant by electronic spectroscopy were consistent with a portion of the two Co being coordinated by Cys319. Whereas the inactive Co-CO2-urease possesses a single histidyl ligand per metal, the species formed using C319A apoprotein more nearly resembles the native metallocenter and exhibits low levels of activity. Activity is also associated with one of two species of Mn-CO2-urease. A crystal structure of the inactive Mn-CO2-urease species shows a metallocenter very similar in structure to that of native urease, but with a disordering of the Asp360 ligand and movement in the Mn-coordinated solvent molecules. Cu(II) was bound to many sites on the protein in addition to the usual metallocenter, but most of the adventitious metal was removed by treatment with EDTA. Cu-treated urease was irreversibly inactivated, even in the C319A variant, and was not further characterized. Metal speciation between Ni, Co, and Mn most affected the higher of two pK a values for urease activity, consistent with this pK a being associated with the metal-bound hydrolytic water molecule. Our results highlight the importance of precisely positioned protein ligands and solvent structure for urease activity. Received: 11 February 1999 / Accepted: 19 May 1999  相似文献   

14.
In merodiploid strains of Klebsiella aerogenes with chromosomal hut genes of K. aerogenes and episomal hut genes of Salmonella typhimurium, the repressor of either species can regulate the hut operons of the other species. The repression exerted by the homologous repressor on the left-hand hut operon is, in both organisms, stronger than that exerted by the heterologous repressor.  相似文献   

15.
16.
Higher cell concentrations and greater 2,3-butanediol production were observed in aerobic cultures of Klebsiella oxytoca than with anaerobic cultures. The concentration of butanediol inhibitors such as ethanol and lactic acid are partially suppressed by adequate aeration-agitation. Excessive aeration-agitation leads to the formation of acetoin and acetic acid at the expense of butanediol. With 94.3 g/l of glucose in the media, aerobic batch cultures produced 38.1 g/l butanediol with complete substrate use and a productivity of 0.39 g/l/h.  相似文献   

17.
The hdc genes encoding the inducible pyridoxal-P-dependent histidine decarboxylase (HisDCase) of Klebsiella planticola and Enterobacter aerogenes were isolated, sequenced, and expressed in Escherichia coli under control of the lac promoter, and the overproduced enzymes were purified to homogeneity from the recombinant host. Formation of inclusion bodies during synthesis of the E. aerogenes enzyme was avoided by cooling the culture and inducing at 25 degrees C. The cloned enzymes were produced in amounts three to four times those present in the fully induced native hosts and were identical in properties to those isolated earlier (Guirard, B. M., and Snell, E. E. (1987) J. Bacteriol. 169, 3963-3968). The two enzymes showed 85% sequence identity and also showed 80% sequence identity with the previously sequenced (Vaaler, G. L., Brasch, M. A., and Snell, E. E. (1986) J. Biol. Chem. 261, 11010-11014) HisDCase of Morganella morganii. Nevertheless, antibodies to the M. morganii HisDCase do not cross-react with these enzymes suggesting that the regions of amino acid variations are located on the outer surface of the proteins. All three HisDCases are the same length (377 amino acid residues); encoded N-terminal methionine was completely removed in each case. These closely related pyridoxal-P enzymes show no sequence homology with the pyruvoyl-dependent HisDCases of Gram-positive bacteria.  相似文献   

18.
Klebsiella pneumoniae is known to produce meso-2,3-butanediol and 2S,3S-butanediol, whereas 2R,3R-butanediol was detected in the culture broth of K. pneumoniae CGMCC 1.6366. The ratio of 2R,3R-butanediol to all isomers obtained using glycerol as the carbon source was higher than that obtained using glucose as the carbon source. Therefore, enzymes involved in glycerol metabolism are likely related to 2R,3R-butanediol formation. In vitro reactions show that glycerol dehydrogenase catalyzes the stereospecific conversion of R-acetoin to 2R,3R-butanediol and S-acetoin to meso-2,3-butanediol. Butanediol dehydrogenase exhibits high (S)-enantioselectivity in ketone reduction. Genes encoding glycerol dehydrogenase, α-acetolactate decarboxylase, and butanediol dehydrogenase were individually disrupted in K. pneumoniae CGMCC 1.6366, and the 2,3-butanediol synthesis characteristics of these mutants were investigated. K. pneumoniae ΔdhaD lost the ability to synthesize 2R,3R-butanediol. K. pneumoniae ΔbudA showed reduced 2R,3R-butanediol synthesis. However, K. pneumoniae ΔbudC produced a high level of 2R,3R-butanediol, and R-acetoin was accumulated in the broth. The metabolic characteristics of these mutants and in vitro experiment results demonstrated the mechanism of the 2,3-butanediol stereoisomer synthesis pathway. Glycerol dehydrogenase, encoded by dhaD, exhibited 2R,3R-butanediol dehydrogenase activity and was responsible for 2R,3R-butanediol synthesis from R-acetoin. This enzyme also contributed to meso-2,3-butanediol synthesis from S-acetoin. Butanediol dehydrogenase, encoded by budC, was the only enzyme that catalyzed the conversion of diacetyl to S-acetoin and further to 2S,3S-butanediol.  相似文献   

19.
Zhang GL  Wang CW  Li C 《Biotechnology letters》2012,34(8):1519-1523
The budC gene encoding the meso-2,3-BDH from Klebsiella pneumoniae XJ-Li was expressed in E. coli BL21 (DE3) pLys. Hypothetical amino acid sequence alignments revealed that the enzyme belongs to the short chain dehydrogenase/reductase family. After purification and refolding, the recombinant enzyme had activities of 218 U/mg for reduction of acetoin and 66 U/mg for oxidation of meso-2,3-butanediol. Highest activities were at pH 8.0 and 9.0 respectively. These are higher than other meso-2,3-butanediol dehydrogenases from K. pneumoniae. The low K (m) value (0.65 mM) for acetoin indicated that the enzyme can easily reduce acetoin to meso-2,3-butanediol. There were no significant activities towards 2R,3R-2,3-butanediol, 1,4-butanediol and 2S,3S-2,3-butanediol, suggesting that the enzyme has a high stereospecificity for the meso-dihydric alcohol.  相似文献   

20.
产气肠杆菌EAM-Z1尿苷磷酸化酶的分离纯化及性质研究   总被引:5,自引:0,他引:5  
从产气肠杆菌 (Enterobacteraerogenes)突变株EAM Z1中分离出一种具有较高转移酶活性的尿苷磷酸化酶 (UPase)。经测定这种Upase的分子量为 1 2 .8× 1 0 4,亚基分子量为 4 .3×1 0 4,由 3个同型亚基组成。N端氨基酸序列为 :MRMVDLIATKRDGGE。等电点为 4 .46。对尿苷的Km为 0 .2 9mmol L。酶反应的最适pH为 7.8,最适温度为 50℃。该酶能磷酸化尿苷、胸苷、5 氟尿苷、2′ 脱氧 5 氟尿苷及尿嘧啶 β D 阿拉伯呋喃糖 ,且具有较高的转移酶活性 ,能将尿苷和 5 氟尿嘧啶转化成 5 氟尿苷 (一种抗癌药物的中间体 ) ,其转化率为 47%。该酶的这些特性对于酶法合成核苷类抗肿瘤药物和抗病毒药物是十分有用的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号