共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I 总被引:12,自引:0,他引:12
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes. 相似文献
2.
To evaluate the structural influence of the DNA phosphate backbone on the activity of Escherichia coli DNA topoisomerase I, modified forms of oligonucleotide dA(7) were synthesized with a chiral phosphorothioate replacing the non-bridging oxygens at each position along the backbone. A deoxy-iodo-uracil replaced the 5'-base to crosslink the oligonucleotides by ultraviolet (UV) and assess binding affinity. At the scissile phosphate there was little effect on the cleavage rate. At the +1 phosphate, the rectus phosphorus (Rp)-thio-substitution reduced the rate of cleavage by a factor of 10. At the +3 and -2 positions from the scissile bond, the Rp-isomer was cleaved at a faster rate than the sinister phosphorus (Sp)-isomer. The results demonstrate the importance of backbone contacts between DNA substrate and E. coli topoisomerase I. 相似文献
3.
Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. 总被引:28,自引:16,他引:28
下载免费PDF全文

In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. 相似文献
4.
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface. 相似文献
5.
Site-specific DNA cleavage by vaccinia virus DNA topoisomerase I. Role of nucleotide sequence and DNA secondary structure. 总被引:3,自引:0,他引:3
S Shuman 《The Journal of biological chemistry》1991,266(3):1796-1803
Cleavage of linear duplex DNA by purified vaccinia virus DNA topoisomerase I occurs at a conserved sequence element (5'-C/T)CCTT decreases) in the incised DNA strand. Oligonucleotides spanning the high affinity cleavage site CCCTT at nucleotide 2457 in pUC19 DNA are cleaved efficiently in vitro, but only when hybridized to a complementary DNA molecule. As few as 6 nucleotides proximal to the cleavage site and 6 nucleotides downstream of the site are sufficient to support exclusive cleavage at the high affinity site (position +1). Single nucleotide substitutions within the consensus pentamer have deleterious effects on the equilibria of the topoisomerase binding and DNA cleavage reactions. The effects of base mismatch within the pentamer are more dramatic than are the effects of mutations that preserve base complementarity. Competition experiments indicate that topoisomerase binds preferentially to DNA sites containing the wild-type pentamer element. Single-stranded DNA containing the sequence CCCTT in the cleaved stand is a more effective competitor than is single-stranded DNA containing the complementary sequence in the noncleaved strand. 相似文献
6.
Vaccinia DNA topoisomerase IB is the smallest of the type IB topoisomerases. Because of its small size (314 amino acids) and target site specificity (5'(C/T)CCTTp(↓) sites), it constitutes an excellent model for studying the interaction of type IB enzymes with duplex DNA. In this study, p-thiophenylalanine was incorporated into the enzyme active site (position 274) by in vitro translation in the presence of a chemically misacylated tRNA. The modification, which resulted in replacement of the nucleophilic tyrosine OH group with SH, retained DNA topoisomerase activity and did not alter the DNA cleavage site. However, the modified topoisomerase effected relaxation of supercoiled plasmid DNA at a rate about 16-fold slower than the wild-type enzyme. The thiophenylalanine-induced DNA cleavage rate (k(cl) = 1 × 10(-4) s(-1)) was 30 times lower than for the wild-type enzyme (k(cl) = 3 × 10(-3) s(-1)). In contrast, thiophenylalanine-induced DNA religation was faster than that of the wild-type enzyme. We propose that the change in kinetics reflects the difference in bond energies between the O-P and S-P bonds being formed and broken in the reactions catalyzed by the wild-type and modified enzymes. We also studied the effect of adding Mg(2+) and Mn(2+) to the wild-type and modified topoisomerases I. Divalent metal ions such as Mg(2+) and Mn(2+) increased DNA relaxation activity of the wild-type and modified enzymes. However, the pattern of increases failed to support the possibility that metal ion-heteroatom interaction is required for catalysis. 相似文献
7.
Vaccinia DNA topoisomerase (vTopo) catalyzes highly specific nucleophilic substitution at a single phosphodiester linkage in the pentapyrimidine recognition sequence 5'-(C/T)+5C4+C3+T+2T+1p \N-1 using an active-site tyrosine nucleophile, thereby expelling a 5' hydroxyl leaving group of the DNA. Here, we report the energetic effects of subtle modifications to the major-groove hydrogen-bond donor and acceptor groups of the 3'-GGGAA-5' consensus sequence of the nonscissile strand in the context of duplexes in which the scissile strand length was progressively shortened. We find that the major-groove substitutions become energetically more damaging as the scissile strand is shortened from 32 to 24 and 18 nucleotides, indicating that enzyme interactions with the duplex region present in the 32-mer but not the 24- or 18-mer weaken specific interactions with the DNA major groove. Regardless of strand length, the destabilizing effects of the major-groove substitutions increase as the reaction proceeds from the Michaelis complex to the transition state for DNA cleavage and, finally, to the phosphotyrosine-DNA covalent complex. These length-dependent anticooperative interactions involving the DNA major groove and duplex regions 3' to the cleavage site indicate that the major-groove binding energy is fully realized late during the reaction for full-length substrates but that smaller more flexible duplex substrates feel these interactions earlier along the reaction coordinate. Such anticooperative binding interactions may play a role in strand exchange and supercoil unwinding activities of the enzyme. 相似文献
8.
The prototypic type IB topoisomerase isolated from vaccinia virus cleaves the phosphodiester backbone of duplex DNA at the sequence 5'-(C/T)CCTT, forming a covalent 3'-phosphotyrosyl adduct. A precleavage conformational change in which the enzyme clamps circumferentially around the DNA has been implicated on the basis of structural and biochemical studies. However, no direct measurements to elucidate this key step have been obtained to date. To address this shortcoming we have developed two new fluorescence assays that allow detection of conformational changes in both the enzyme and substrate DNA, and allow determination of the thermodynamic and kinetic mechanism for noncovalent DNA binding and phosphodiester cleavage. The results indicate that clamp closing occurs in a rapid step (>25 s(-1)) that is at least 14-fold faster than the maximal rate of DNA cleavage. Opening of the clamp to release the noncovalently bound substrate is also 5-8-fold more rapid than DNA cleavage. We propose a model in which DNA cleavage and religation are connected through a single high energy transition state involving covalent bond breaking. Alternative models that involve a slow precleavage conformational step are not easily reconciled with the available data. 相似文献
9.
Colley WC van der Merwe M Vance JR Burgin AB Bjornsti MA 《The Journal of biological chemistry》2004,279(52):54069-54078
Eukaryotic DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of camptothecin (CPT). Mutation of conserved residues in close proximity to the active site tyrosine (Tyr(727) of yeast Top1p) alters the DNA cleavage religation equilibrium, inducing drug-independent cell lethality. Previous studies indicates that yeast Top1T722Ap and Top1N726Hp cytotoxicity results from elevated levels of covalent enzyme-DNA intermediates. Here we show that Top1T722Ap acts as a CPT mimetic by exhibiting reduced rates of DNA religation, whereas increased Top1N726Hp.DNA complexes result from elevated DNA binding and cleavage. We also report that the combination of the T722A and N726H mutations in a single protein potentiates the cytotoxic action of the enzyme beyond that induced by co-expression of the single mutants. Moreover, the addition of CPT to cells expressing the double top1T722A/N726H mutant did not enhance cell lethality. Thus, independent alterations in DNA cleavage and religation contribute to the lethal phenotype. The formation of distinct cytotoxic lesions was also evidenced by the different responses induced by low levels of these self-poisoning enzymes in isogenic strains defective for the Rad9 DNA damage checkpoint, processive DNA replication, or ubiquitin-mediated proteolysis. Substitution of Asn(726) with Phe or Tyr also produces self-poisoning enzymes, implicating stacking interactions in the increased kinetics of DNA cleavage by Top1N726Hp and Top1N726Fp. In contrast, replacing the amide side chain of Asn(726) with Gln renders Top1N726Qp resistant to CPT, suggesting that the orientation of the amide within the active site is critical for effective CPT binding. 相似文献
10.
The inhibition of DNA topoisomerase I (Top1) has proven to be a successful approach in the design of anticancer agents. However, despite the clinical successes of the camptothecin derivatives, a significant need for less toxic and more chemically stable Top1 inhibitors still persists. Here, we describe one of the most frequently used protocols to identify novel Top1 inhibitors. These methods use uniquely 3'-radiolabeled DNA substrates and denaturing polyacrylamide gel electrophoresis to provide evidence for the Top1-mediated DNA cleaving activity of potential Top1 inhibitors. These assays allow comparison of the effectiveness of different drugs in stabilizing the Top1-DNA intermediate or cleavage (cleavable) complex. A variation on these assays is also presented, which provides a suitable system for determining whether the inhibitor blocks the forward cleavage or religation reactions by measuring the reversibility of the drug-induced Top1-DNA cleavage complexes. This entire protocol can be completed in approximately 2 d. 相似文献
11.
S Shuman 《The Journal of biological chemistry》1991,266(17):11372-11379
Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being the site of cleavage). On the noncleaved strand, the protected region extends from +13 to -9. Similar nuclease protection is observed for a mutant topoisomerase (containing a Tyr ---- Phe substitution at the active site amino acid 274) that is catalytically inert and does not form the covalent intermediate. Thus, vaccinia topoisomerase is a specific DNA binding protein independent of its competence in transesterification. By studying the cleavage of a series of 12-mer DNA duplexes in which the position of the CCCTTdecreases motif within the substrate is systematically phased, the "minimal" substrate for cleavage has been defined; cleavage requires six nucleotides upstream of the cleavage site and two nucleotides downstream of the site. An analysis of the cleavage of oligomer substrates mutated singly in the CCCTT sequence reveals a hierarchy of mutational effects based on position within the pentamer motif and the nature of the sequence alteration. 相似文献
12.
13.
Analysis of vaccinia topoisomerase mutants that are impaired in DNA relaxation has allowed the identification of amino acid residues required for the transesterification step of catalysis. Missense mutations of wild-type residues Gly-132----Asp and Arg-223----Gln rendered the protein inert in formation of the covalent enzyme-DNA complex and hence completely inactive in DNA relaxation. Mutations of Thr-147----Ile and Gly-132----Ser caused severe defects in covalent adduct formation that correlated with the extent of inhibition of relaxation. None of these point mutations had an effect on noncovalent DNA binding sufficient to account for the defect in relaxation. Deletion of amino- or carboxyl-terminal portions of the polypeptide abrogated noncovalent DNA binding. Two distinct topoisomerase-DNA complexes were resolved by native gel electrophoresis. One complex, which was unique to those proteins competent in covalent adduct formation, contained topoisomerase bound to the 5'-portion of the incised DNA strand. The 3'-segment of the cleaved strand had dissociated spontaneously. This complex was isolated and shown to catalyze transfer of the covalently bound DNA to a heterologous acceptor oligonucleotide, thereby proving that the covalent adduct between protein and duplex DNA is a true intermediate in strand breakage and reunion. The role of the active site region of eukaryotic topoisomerase in determining sensitivity or resistance to camptothecin was examined by converting the active site region of the resistant vaccinia enzyme (SKRAY274) to that of the drug-sensitive yeast enzyme (SKINY). The SKINY mutation did not alter the resistance of the vaccinia enzyme to the cleavage-enhancing effects of camptothecin. 相似文献
14.
Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli 总被引:12,自引:0,他引:12
The putative structural gene encoding the vaccinia virus type I DNA topoisomerase (EC 5.99.1.2) was expressed in Escherichia coli under the control of a bacteriophage T7 promoter. Provision of T7 RNA polymerase resulted in the accumulation to high level of a Mr = 33,000 type I topoisomerase with the properties of the vaccinia enzyme. A simple purification scheme yielded approximately 8 mg of recombinant vaccinia topoisomerase from 400 ml of bacteria. DNA unwinding by the enzyme was stimulated by magnesium, manganese, calcium, cobalt, and spermidine, but inhibited by copper and zinc. Like eukaryotic cellular type I topoisomerases, but unlike the prokaryotic counterpart, the recombinant topoisomerase relaxed positively and negatively supercoiled DNA. The viral topoisomerase I was, however, resistant to the effects of camptothecin, a drug that specifically inhibits cellular type I topoisomerases. 相似文献
15.
The intracellular substrate for eukaryotic DNA topoisomerases is chromatin rather than protein-free DNA. Yet, little is known about the action of topoisomerases on chromatin-associated DNA. We have analyzed to what extent the organization of DNA in chromatin influences the accessibility of DNA molecules for topoisomerase I cleavage in vitro. Using potassium dodecyl sulfate precipitation (Trask et al., 1984), we found that DNA in chromatin is cleaved by the enzyme with somewhat reduced efficiency compared to protein-free DNA. Furthermore, using native SV40 chromatin and mononucleosomes assembled in vitro, we show that DNA bound to histone octamer complexes is cleaved by topoisomerase I and that the cleavage sites as well as their overall distribution are identical in histone-bound and in protein-free DNA molecules. 相似文献
16.
Holliday junctions are intermediates in genetic recombination. They consist of four strands of DNA that flank a branch point. In natural systems, their sequences have 2-fold (homologous) sequence symmetry. This symmetry enables the molecules to undergo an isomerization, known as branch migration, that relocates the site of the branch point. Branch migration leads to polydispersity, which makes it difficult to characterize the physical properties of the junction and the effects of the sequence context flanking the branch point. Previous studies have reported two symmetric junctions that do not branch migrate: one that is immobilized by coupling to an asymmetric junction in a double crossover context, and a second that is based on molecules containing 5',5' and 3',3' linkages. Both are flawed by distorting the structure of the symmetric junction from its natural conformation. Here, we report an undistorted symmetric immobile junction based on the use of DNA parallelogram structures. We have used a series of these junctions to characterize the junction resolution reaction catalyzed by vaccinia virus DNA topoisomerase. The resolution reaction entails cleavage and rejoining at CCCTT/N recognition sites arrayed on opposing sides of the four-arm junction. We find that resolution is optimal when the scissile phosphodiester (Tp/N) is located two nucleotides 5' to the branch point on the helical strand. Covalent topoisomerase-DNA adducts are precursors to recombinant strands in all reactions, as expected. Kinetic analysis suggests a rate limiting step after the first-strand cleavage. 相似文献
17.
E Kjeldsen S Mollerup B Thomsen B J Bonven L Bolund O Westergaard 《Journal of molecular biology》1988,202(2):333-342
We have studied the effect of the antitumor drug, camptothecin, on the interaction of human topoisomerase I with DNA at the sequence level. At a low molar ratio of enzyme to DNA, cleavage is prominent and unique, located at a previously described hexadecameric recognition sequence, while a number of strong additional cleavage sites appear in the presence of the drug. Camptothecin stimulates cleavage at the recognition sequence less than twofold, whereas cleavage at the additional sites is stimulated up to 200-fold. Camptothecin greatly enhances the stability of the cleavable complexes formed at the additional sites, whereas the complex formed at the hexadecameric sequence is only marginally affected. Cleavage was eliminated at certain sites in the presence of camptothecin. Taken together these observations demonstrate that at least three types of potential eukaryotic topoisomerase I cleavage sites can be distinguished by the use of camptothecin. Comparison of the sequences at the additional cleavage sites in the presence of camptothecin reveals that the most frequently cleaved dinucleotide is TG with no consensus for the flanking nucleotides. 相似文献
18.
The proposed mechanism of type IA DNA topoisomerase I includes conformational changes by the single enzyme polypeptide to allow binding of the G strand of the DNA substrate at the active site, and the opening or closing of the "gate" created on the G strand of DNA to the passing single or double DNA strand(s) through the cleaved G strand DNA. The shifting of an alpha helix upon G strand DNA binding has been observed from the comparison of the type IA DNA topoisomerase crystal structures. Site-directed mutagenesis of the strictly conserved Gly-194 at the N terminus of this alpha helix in Escherichia coli DNA topoisomerase I showed that flexibility around this glycine residue is required for DNA cleavage and relaxation activity and supports a functional role for this hinge region in the enzyme conformational change. 相似文献
19.
Structure of the human type I DNA topoisomerase gene 总被引:7,自引:0,他引:7
N Kunze G C Yang M D?lberg R Sundarp R Knippers A Richter 《The Journal of biological chemistry》1991,266(15):9610-9616
We describe the molecular organization of the human gene coding for type I DNA topoisomerase. The coding sequence is split into 21 exons distributed over at least 85 kilobase pairs (kb) of human genomic DNA. The sizes of the 20 introns vary widely between 0.2 and at least 30 kb and all contain the sequence elements known to be required for pre-mRNA splicing. Several of the intron sequences separate exons encoding parts of the enzyme that are highly conserved between human and yeast suggesting that at least some of the exons may code for individual, structurally, or functionally important domains of the enzyme. We also describe the promoter sequence of the human topoisomerase I gene and show that it is composed of distinct functional elements. 相似文献