首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant proteins rN (nucleocapsid) and rH/Nh (hemagglutinin) of the measles virus strain NovO/96 of genotype A were obtained. The immunobiological properties of the proteins were studied in the reaction with a panel of positive and negative sera. Mice of the line Balb/C were immunized with recombinant proteins and native antigen of the measles virus strain NovO/96 in order to obtain hyperimmune serum and its analysis using ELISA (enzyme-linked immunosorbent assay) and PRN (plaque reduction neutralization). The hyperimmune serum against recombinant proteins and native antigen of the measles virus strain NovO/96 were found to be highly active in ELISA. The antibodies against the proteins rN and rH/Nh were found to be able to neutralize the virus in titer 1:13.5 and 1:22.9, respectively. The neutralization titer of the antibodies generated against native antigen of the measles virus strain NovO/96 was 1:25.7.  相似文献   

2.
Antibody detection of SARS-CoV spike and nucleocapsid protein   总被引:9,自引:0,他引:9  
Early detection and identification of SARS-CoV-infected patients and actions to prevent transmission are absolutely critical to prevent another SARS outbreak. Antibodies that specifically recognize the SARS-CoV spike and nucleocapsid proteins may provide a rapid screening method to allow accurate identification and isolation of patients with the virus early in their infection. For this reason, we raised peptide-induced polyclonal antibodies against SARS-CoV spike protein and polyclonal antibodies against SARS-CoV nucleocapsid protein using 6x His nucleocapsid recombinant protein. Western blot analysis and immunofluorescent staining showed that these antibodies specifically recognized SARS-CoV.  相似文献   

3.
To evaluate humoral immunity against the SARS-associated coronavirus (SARS-CoV), we studied the profiles of IgG antibodies to the nucleocapsid (N) and spike (S) proteins of SARS-CoV. Serum specimens from 10 SARS patients were analyzed by Western blotting and an enzyme-linked immunosorbent assay (ELISA) using purified recombinant N and truncated S (S1, S2, and S3) proteins as antigens. Western blotting results demonstrated that 100% of the SARS patients tested positive for N protein-specific antibodies, 50% for S1 protein-specific antibodies, 30% for S2 protein-specific antibodies, and 70% for S3 protein-specific antibodies. The ELISA results, which showed positive rates of IgG reactivity against recombinant proteins N, S1, S2, and S3, were, respectively, 28.57, 14.29, 14.29, and 14.29% at week 1, 77.78, 55.56, 44.44, and 66.67% at week 2, 100, 75, 75, and 87.5% at week 3, and 100, 77.78, 77.78, and 88.89% after 3 weeks. The average titers of IgG against recombinant proteins N, S1, S2, and S3 were, respectively, 691, 56, 38, and 84 after 3 weeks. These results suggest that the recombinant proteins N and S3 are potentially useful antigens for a serological diagnosis of SARS. In consideration of possible cross-reactivity among N proteins of SARS-CoV and other coronaviruses, immunoassays using recombinant N protein in combination with S3 as antigens might improve the specificity of SARS diagnoses.  相似文献   

4.
Callitrichid hepatitis (CH) is an acute, often fatal viral infection of New World primates from the family Callitrichidae. The etiologic agent of CH is unknown. We report here the isolation of an arenavirus from a common marmoset (Callithrix jacchus) with CH by using in vitro cultures of marmoset hepatocytes and Vero-E6 cells. Enveloped virions 67 to 133 nm in diameter with ribosomelike internal structures were seen in infected cultures. Immunofluorescence and Western immunoblot analysis using CH-specific antisera (principally from animals exposed to CH during zoo outbreaks) revealed three antigens in cells infected with this CH-associated virus (CHV). These antigens had the same electrophoretic mobilities on sodium dodecyl sulfate-polyacrylamide gels as did the nucleocapsid, GP2, and GPC proteins of lymphocytic choriomeningitis virus (LCMV). Monoclonal antibodies specific for these arenavirus proteins also reacted with the three CHV antigens. Conversely, the CH-specific antisera reacted with the nucleocapsid, GP2, and GPC proteins of LCMV. CHV thus appears to be a close antigenic relative of LCMV. The serologic association of CHV with several CH outbreaks implicate it as the etiologic agent of this disease.  相似文献   

5.
Baculovirus and vaccinia virus vectors were used to express the small (S) and medium (M) genome segments of Hantaan virus. Expression of the complete S or M segments yielded proteins electrophoretically indistinguishable from Hantaan virus nucleocapsid protein or envelope glycoproteins (G1 and G2), and expression of portions of the M segment, encoding either G1 or G2 alone, similarly yielded proteins which closely resembled authentic Hantaan virus proteins. The expressed envelope proteins retained all antigenic sites defined by a panel of monoclonal antibodies to Hantaan virus G1 and G2 and elicited antibodies in animals which reacted with authentic viral proteins. A Hantaan virus infectivity challenge model in hamsters was used to assay induction of protective immunity by the recombinant-expressed proteins. Recombinants expressing both G1 and G2 induced higher titer antibody responses than those expressing only G1 or G2 and protected most animals from infection with Hantaan virus. Baculovirus recombinants expressing only nucleocapsid protein also appeared to protect some animals from challenge. Passively transferred neutralizing monoclonal antibodies similarly prevented infection, suggesting that an antibody response alone is sufficient for immunity to Hantaan virus.  相似文献   

6.
Nairobi sheep disease virus (NSDV; also called Ganjam virus in India) is a bunyavirus of the genus Nairovirus. It causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%. The virus is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus (CCHFV). Little is currently known about the biology of NSDV. We have generated specific antibodies against the virus nucleocapsid protein (N) and polymerase (L) and used these to characterise NSDV in infected cells and to study its distribution during infection in a natural host. Due to its large size and the presence of a papain-like protease (the OTU-like domain) it has been suggested that the L protein of nairoviruses undergoes an autoproteolytic cleavage into polymerase and one or more accessory proteins. Specific antibodies which recognise either the N-terminus or the C-terminus of the NSDV L protein showed no evidence of L protein cleavage in NSDV-infected cells. Using the specific anti-N and anti-L antibodies, it was found that these viral proteins do not fully colocalise in infected cells; the N protein accumulated near the Golgi at early stages of infection while the L protein was distributed throughout the cytoplasm, further supporting the multifunctional nature of the L protein. These antibodies also allowed us to gain information about the organs and cell types targeted by the virus in vivo. We could detect NSDV in cryosections prepared from various tissues collected post-mortem from experimentally inoculated animals; the virus was found in the mucosal lining of the small and large intestine, in the lungs, and in mesenteric lymph nodes (MLN), where NSDV appeared to target monocytes and/or macrophages.  相似文献   

7.
Wu W  Liang H  Kan J  Liu C  Yuan M  Liang C  Yang K  Pang Y 《Journal of virology》2008,82(24):12356-12364
It has been shown that the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) 38K (ac98) is required for nucleocapsid assembly. However, the exact role of 38K in nucleocapsid assembly remains unknown. In the present study, we investigated the relationship between 38K and the nucleocapsid. Western blotting using polyclonal antibodies raised against 38K revealed that 38K was expressed in the late phase of infection in AcMNPV-infected Spodoptera frugiperda cells and copurified with budded virus (BV) and occlusion-derived virus (ODV). Biochemical fractionation of BV and ODV into the nucleocapsid and envelope components followed by Western blotting showed that 38K was associated with the nucleocapsids. Immunoelectron microscopic analysis revealed that 38K was specifically localized to the nucleocapsids in infected cells and appeared to be distributed over the cylindrical capsid sheath of nucleocapsid. Yeast two-hybrid assays were performed to examine potential interactions between 38K and nine known nucleocapsid shell-associated proteins (PP78/83, PCNA, VP1054, FP25, VLF-1, VP39, BV/ODV-C42, VP80, and P24), three non-nucleocapsid shell-associated proteins (P6.9, PP31, and BV/ODV-E26), and itself. The results revealed that 38K interacted with the nucleocapsid proteins VP1054, VP39, VP80, and 38K itself. These interactions were confirmed by coimmunoprecipitation assays in vivo. These data demonstrate that 38K is a novel nucleocapsid protein and provide a rationale for why 38K is essential for nucleocapsid assembly.  相似文献   

8.
Anti-basement membrane glomerulopathy in experimental trypanosomiasis   总被引:4,自引:0,他引:4  
The nature of kidney lesions in BD IX rats infected with Trypanosoma brucei was investigated. Proteinuria developed and increased up to 236 +/- 35 mg/24 hr at 7 wk after the infection. Antibodies were found to be deposited along the glomerular basement membrane (GBM) predominantly in a linear fashion, which changed to a more granular pattern 7 wk after the infection. At this stage of the disease, electron-dense deposits were found subendothelially along the GBM. In the sera and kidney eluates of diseased rats, anti-GBM antibodies were present. Enzyme-linked immunosorbent assay (ELISA) studies showed antibodies which reacted with GBM components laminin and type IV collagen and not with fibronectin. The antibody specificity was confirmed by using competitive and cross-absorption ELISA techniques, as well as immunoblotting. With the use of indirect immunofluorescence, no common antigenic sites were found on trypanosomes and GBM components. The observed linear immunofluorescence pattern seems to be caused by glomerular binding of antibodies directed against laminin and type IV collagen, which are known to be able to induce renal disease. Subendothelial complex formation in later stages of the disease might result from a molecular rearrangement of GBM components after in situ binding of the antibodies. The formation of auto-antibodies directed against laminin and type IV collagen is probably caused by restricted polyclonal B cell stimulation, a well known feature of trypanosomiasis.  相似文献   

9.
Three indirect enzyme-linked immunosorbent assays (iELISA) based on the North American like (NA-like), European like (EU-like) and co-expressed NA- and EU-like recombinant nucleocapsid proteins (N-protein) of porcine reproductive and respiratory syndrome virus (PRRSV) were validated for the detection of the antibodies in porcine sera. A total of 422 serum samples from unvaccinated pigs were tested. The cut-off value was optimized by a two-graph receiver operating characteristics analysis at a 95% confidence level. This assay was validated with Western blot analysis and IDEXX HerdChek™ ELISA. Cross-reactivity results showed that iELISA was PRRSV-specific. Repeatability tests revealed that the coefficients of variation of positive sera within and between runs were less than 10%. The results indicate that iELISA is simpler to produce and perform, time-saving and suitable for large scale surveys of PRRSV infection at low cost, and is potentially useful to evaluate the efficiency of various vaccines against PRRSV.  相似文献   

10.
Recently, the high-level expression of authentic and hexahistidine (His)-tagged Puumala (strain Vranica/H?lln?s) hantavirus nucleocapsid protein derivatives in the yeast Saccharomyces cerevisiae has been reported [Dargeviciute et al., Vaccine, 20 (2002) 3523-3531]. Here we describe the expression of His-tagged nucleocapsid proteins of other Puumala virus strains (Sotkamo, Kazan) as well as Dobrava (strains Slovenia and Slovakia) and Hantaan (strain Fojnica) hantaviruses using the same system. All nucleocapsid proteins were expressed in the yeast S. cerevisiae at high levels. The nucleocapsid proteins can be easily purified by nickel chelate chromatography; the yield for all nucleocapsid proteins ranged from 0.5 to 1.5 mg per g wet weight of yeast cells. In general, long-term storage of all nucleocapsid proteins without degradation can be obtained by storage in PBS at -20 degrees C or lyophilization. The nucleocapsid protein of Puumala virus (strain Vranica/H?lln?s) was demonstrated to contain only traces of less than 10 pg nucleic acid contamination per 100 microg of protein. The yeast-expressed nucleocapsid proteins of Hantaan, Puumala and Dobrava viruses described here represent useful tools for serological hantavirus diagnostics and for vaccine development.  相似文献   

11.
圆形碘泡虫免疫原性的研究   总被引:3,自引:3,他引:3  
间接红细胞血凝试验结果表明,自然感染圆形泡虫的鲫鱼血清中存在循环抗体,并且感染强度与抗体水平不相关。以圆形碘泡虫孢子的可溶性蛋白为抗原,制备多抗。ELISA和IFAT试验表明,不同发育时期的圆形碘泡虫存在共同抗原,并且粘孢子虫具有属特异性抗原。圆形碘泡虫的抗原成分主要集中在早体后部的一特异位点及四周的早壁上,两个极囊无抗原成分;而 营养体的抗原成分存在于整个虫体。关碘泡虫与兔抗圆形碘泡虫抗体的结合  相似文献   

12.
将HCoV-NL63核衣壳蛋白N端(Np1~154aa)、C端(Cp141~306aa)基因片段克隆到原核表达载体pET30a(+)上进行原核表达,制备相应的纯化蛋白Np、Cp蛋白,利用Np、Cp蛋白建立基于Western-Blot条带印迹的HCoV-NL63抗体检测法,并与基于全长N蛋白(Nf)的HCoV-NL63抗体检测法相平行筛查了50份成年体检血清。结果显示:50份成年体检血清中,采用Nf、Np、Cp分别检出25、27、36份HCoV-NL63抗体阳性血清,检出率分别为50%、54%、72%。不同N蛋白与血清反应抗体阳性谱存在差异,其中Np与Nf检出一致率为64%,Cp与Nf检出一致率为54%,而Np与Cp检出一致率为54%。本研究表明人冠状病毒NL63在我国人群中感染常见,N蛋白C端(Cp)检出率比全长N(Nf)及N端(Np)要高,Nf、Np、Cp在抗体检测上存在不一致性。这为HCoV-NL63血清学试剂研发及免疫学研究提供了依据与实验基础。  相似文献   

13.
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a geographically widespread tick-borne arbovirus that has been recognized by the WHO as an emerging pathogen needing urgent attention to ensure preparedness for potential outbreaks. Therefore, availability of accurate diagnostic tools for identification of acute cases is necessary.A panel comprising 121 sequential serum samples collected during acute, convalescent and subsided phase of PCR-proven CCHFV infection from 16 Kosovar patients was used to assess sensitivity. Serum samples from 60 healthy Kosovar blood donors were used to assess specificity. All samples were tested with two IgM/IgG immunofluorescence assays (IFA) from BNITM, the CCHFV Mosaic 2 IgG and IgM indirect immunofluorescence tests (IIFT) from EUROIMMUN, two BlackBox ELISAs for the detection of CCHFV-specific IgM and IgG antibodies (BNITM), two Anti-CCHFV ELISAs IgM and IgG from EUROIMMUN using recombinant structural proteins of CCHFV antigens, and two ELISAs from Vector-Best (IgM: μ-capture ELISA, IgG: indirect ELISA using immobilized CCHFV antigen). Diagnostic performances were compared between methods using sensitivity, specificity, concordance and degree of agreement with particular focus on the phase of the infection.In early and convalescent phases of infection, the sensitivities for detecting specific IgG antibodies differed for the ELISA test. The BlackBox IgG ELISA yielded the highest, followed by the EUROIMMUN IgG ELISA and finally the VectorBest IgG ELISA with the lowest sensitivities. In the subsided phase, the VectorBest IgM ELISA detected a high rate of samples that were positive for anti-CCHFV IgM antibodies. Both test systems based on immunofluorescence showed an identical sensitivity for detection of anti-CCHFV IgM antibodies in acute and convalescent phases of infection.Available serological test systems detect anti-CCHFV IgM and IgG antibodies accurately, but their diagnostic performances vary with respect to the phase of the infection.  相似文献   

14.
The cytotoxic T lymphocyte (CTL) activity of spleen cells from BALB/c (H-2d) mice immunized with the neurotropic JHM strain of mouse hepatitis virus (JHMV) was stimulated in vitro for 7 days. CTL were tested for recognition of target cells infected with either JHMV or vaccinia virus recombinants expressing the four virus structural proteins. Only target cells infected with either JHMV or the vaccinia virus recombinant expressing the JHMV nucleocapsid protein were recognized. Cytotoxic T cell lines were established by limiting dilution from the brains of mice undergoing acute demyelinating encephalomyelitis after infection with JHMV. Twenty of the 22 lines recognized JHMV-infected but not uninfected syngeneic target cells, indicating that they are specific for JHMV. All T-cell lines except one were CD8+. The specificity of the CTL lines was examined by using target cells infected with vaccinia virus recombinants expressing the JHMV nucleocapsid, spike, membrane, and hemagglutinin-esterase structural proteins. Seventeen lines recognized target cells expressing the nucleocapsid protein. Three of the JHMV-specific T-cell lines were unable to recognize target cells expressing any of the JHMV structural proteins, indicating that they are specific for an epitope of a nonstructural protein(s) of JHMV. These data indicate that the nucleocapsid protein induces an immunodominant CTL response. However, no CTL activity specific for the nucleocapsid protein could be detected in either the spleens or cervical lymph nodes of mice 4, 5, 6, or 7 days after intracranial infection, suggesting that the CTL response to JHMV infection within the central nervous system may be induced or expanded locally.  相似文献   

15.
Immunopathogenesis studies employing West Nile virus (WNV) mice model are important for the development of antivirals and vaccines against WNV. Since antibodies produced in mice early during WNV infection are essential for clearing virus from the periphery, it is important to detect early and persistent anti-WNV antibodies. ELISA and plaque reduction neutralization tests are traditionally used for detection of anti-WNV antibodies and WNV-neutralizing antibodies, respectively. Although these assays are sensitive and specific, they are expensive and time consuming. Microsphere immunoassays (MIA) are sensitive, specific, allow for high throughput, are cost effective, require less time to perform than other methods, and require low serum volumes. Several assay parameters such as serum heat-inactivation (HI) and dilution can alter WNV MIA sensitivity. We examined the effect of these parameters on WNV E-protein MIA (WNV E-MIA) for the enhanced detection of anti-WNV IgM and IgG antibodies. WNV E-MIA was conducted using serial dilutions of HI and non-HI (NHI) serum collected at various time points from mice inoculated with WNV. HI significantly enhanced detection of IgM and IgG antibodies as compared to NHI serum. WNV IgM and IgG antibodies in HI sera were detected earlier at day 3 and IgM antibodies persisted up to day 24 after infection. HI serum at 1∶20 dilution was found to be optimal for detection of both IgM and IgG antibodies as compared to higher-serum dilutions. Further, addition of exogenous complement to the HI serum decreased the WNV E-MIA sensitivity. These results suggest that serum-HI and optimal dilution enhance WNV E-MIA sensitivity by eliminating the complement interference, thereby detecting low-titer anti-WNV antibodies during early and late phases of infection. This improved MIA can also be readily employed for detection of low-titer antibodies for detection of other infectious agents and host proteins.  相似文献   

16.
Precursor Protein for Newcastle Disease Virus   总被引:12,自引:10,他引:2       下载免费PDF全文
The course of viral protein synthesis during infection of chicken embryo fibroblasts with Newcastle disease virus (NDV) L. Kansas has been followed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Of the three major virion polypeptide molecular weight classes, I (78,400 daltons), II (53,500 daltons), and III (37,600 daltons), only II, having the same electrophoretic mobility as nucleocapsid polypeptide, appears to be the cleavage product of a precursor polypeptide PII (64,800 daltons) detected in NDV-infected cells after brief labeling with radioactive amino acids. Nucleocapsids were isolated from NDV-infected cells which had been pulse-labeled with radioactive amino acids or pulse-labeled and further incubated with unlabeled amino acids. Gel electrophoretic analysis of proteins derived from nucleocapsids showed that an increase in the period of incubation with unlabeled amino acids resulted in an increase in the amount of radioactivity in nucleocapsid protein. Polypeptide PII was not detected as a transient component of the isolated nucleocapsid fraction. These results are consistent with two interpretations. The product of PII cleavage is (i) nucleocapsid polypeptide, or (ii) a nonvirion or minor envelope polypeptide having the same electrophoretic mobility as nucleocapsid polypeptide.  相似文献   

17.
The epitope study on the SARS-CoV nucleocapsid protein   总被引:6,自引:0,他引:6  
The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this prot  相似文献   

18.
Tang TK  Wu MP  Chen ST  Hou MH  Hong MH  Pan FM  Yu HM  Chen JH  Yao CW  Wang AH 《Proteomics》2005,5(4):925-937
Severe acute respiratory syndrome (SARS) is a serious health threat and its early diagnosis is important for infection control and potential treatment of the disease. Diagnostic tools require rapid and accurate methods, of which a capture ELISA method may be useful. Toward this goal, we have prepared and characterized soluble full-length nucleocapsid proteins (N protein) from SARS and 229E human coronaviruses. N proteins form oligomers, mostly as dimers at low concentration. These two N proteins degrade rapidly upon storage and the major degraded N protein is the C-terminal fragment of amino acid (aa) 169-422. Taken together with other data, we suggest that N protein is a two-domain protein, with the N-terminal aa 50-150 as the RNA-binding domain and the C-terminal aa 169-422 as the dimerization domain. Polyclonal antibodies against the SARS N protein have been produced and the strong binding sites of the anti-nucleocapsid protein (NP) antibodies produced were mapped to aa 1-20, aa 150-170 and aa 390-410. These sites are generally consistent with those mapped by sera obtained from SARS patients. The SARS anti-NP antibody was able to clearly detect SARS virus grown in Vero E6 cells and did not cross-react with the NP from the human coronavirus 229E. We have predicted several antigenic sites (15-20 amino acids) of S, M and N proteins and produced antibodies against those peptides, some of which could be recognized by sera obtained from SARS patients. Antibodies against the NP peptides could detect the cognate N protein clearly. Further refinement of these antibodies, particularly large-scale production of monoclonal antibodies, could lead to the development of useful diagnostic kits for diseases associated with SARS and other human coronaviruses.  相似文献   

19.
To establish a sensitive and specific antibody assay, potent antigenic proteins encoded by human herpesvirus 8 (HHV8) were studied. Fifteen recombinant HHV8-encoded proteins were produced as glutathione S-transferase fusion proteins. The sera from AIDS-associated Kaposi's sarcoma (KS) patients reacted with four proteins encoded by open reading frames (ORFs) K8.1, 59, 65, and 73 in a Western blot assay. An enzyme-linked immunosorbent assay (ELISA) using these four proteins as antigens (mixed-antigen ELISA) revealed that all 26 sera derived from KS patients (24 with and 2 without human immunodeficiency virus infection) became positive for anti-HHV8 antibodies. The presence of HHV8 was demonstrated in 14 (1. 4%) of 1,004 sera from the Japanese general population and 10 (1.9%) of 527 sera from patients without HHV8-associated diseases. The presence of immunoglobulin G (IgG) and IgM antibodies against HHV8 examined further by the mixed-antigen ELISA and Western blotting revealed IgG antibody in all ELISA-positive sera, while IgM antibody against ORF K8.1 was absent. These data suggest that the ORF 73 and 65 proteins are potent antigens for a sensitive serological assay.  相似文献   

20.
Helicobacter pylori is a Gram-negative spiral bacterium that colonizes human gastric mucosa causing infection. In this study aiming at inhibition of H. pylori infection we made an attempt to evaluate immunogenicity of the total (UreC) and C-terminal (UreCc) fragments of H. pylori urease. Total UreC and its C-terminal fragment were expressed in E. coli. Recombinant proteins were analyzed by SDS-PAGE and western blot and then purified by Ni-NTA affinity chromatography. Female C57BL6/j mice were immunized with the purified proteins (UreC and UreCc). Antibody titers from isolated sera were measured by ELISA. Immunized mice were then challenged by oral gavage with live H. pylori Sydney strain SS1. Total of 109 CFU were inoculated into stomach of immunized and unimmunized healthy mice three times each at one day interval. Eight weeks after the last inoculation, the blood sample was collected and the serum antibody titer was estimated by ELISA. Stomach tissues from control and experimental animal groups were studied histopathologically. UreC and UreCc yielded recombinant proteins of 61 and 31 kDa respectively. ELIZA confirmed establishment of immunity and the antibodies produced thereby efficiently recognized H. pylori and inhibited its colonization in vivo. Pathological analysis did not reveal established infection in immunized mice challenged with H. pylori. The results support the idea that UreC and UreCc specific antibodies contribute to protection against H. pylori infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号