首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation affecting resistance of Escherichia coli K12 to nalidixic acid   总被引:7,自引:0,他引:7  
A new mutation, nalD, determining resistance of Escherichia coli to nalidixic acid (NAL) is reported. The nalD mutant described is resistant to NAL at 37 degrees C but sensitive at 30 degrees C. It is defective in penetration of NAL and glycerol through the outer membrane at 37 degrees C. The nalD mutation is located half-way between 89 and 89.5 min on the E. coli genetic map.  相似文献   

2.
In Escherichia coli K-12 mutants which had a new nalidixic acid resistance mutation at about 82 min on the chromosome map, cell growth was resistant to or hypersusceptible to nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, and novobiocin. Deoxyribonucleic acid gyrase activity as tested by supercoiling of lambda phage deoxyribonucleic acid inside the mutants was similarly resistant or hypersusceptible to the compounds. The drug concentrations required for gyrase inhibition were much higher than those for cell growth inhibition but similar to those for inhibition of lambda phage multiplication. Transduction analysis with lambda phages carrying the chromosomal fragment of the tnaA-gyrB region suggested that one of the mutations, nal-31, was located on the gyrB gene.  相似文献   

3.
Tiamulin resistance mutations in Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
Forty "two-step" and 13 "three-step" tiamulin-resistant mutants of Escherichia coli PR11 were isolated and tested for alteration of ribosomal proteins. Mutants with altered ribosomal proteins S10, S19, L3, and L4 were detected. The S19, L3, and L4 mutants were studied in detail. The L3 and L4 mutations did not segregate from the resistance character in transductional crosses and therefore seem to be responsible for the resistance. Extracts of these mutants also exhibited an increased in vitro resistance to tiamulin in the polyuridylic acid and phage R17 RNA-dependent polypeptide synthesis systems, and it was demonstrated that this was a property of the 50S subunit. In the case of the S19 mutant, genetic analysis showed segregation between resistance and the S19 alteration and therefore indicated that mutation of a protein other than S19 was responsible for the resistance phenotype. The isolated ribosomes of the S19, L3, and L4 mutants bound radioactive tiamulin with a considerably reduced strength when compared with those of wild-type cells. The association constants were lower by factors ranging from approximately 20 to 200. When heated in the presence of ammonium chloride, these ribosomes partially regained their avidity for tiamulin.  相似文献   

4.
The worldwide emergence of antibiotic-resistant bacteria poses a serious threat to human health. To understand the mechanisms of the resistance is extremely important to the control of these bacteria. In the current study, proteomic methodologies were utilized to characterize OM proteome of Escherichia coli with nalidixic acid (NA) resistance. The OM proteins TolC, OmpT, OmpC and OmpW were found to be up-regulated, and FadL was down-regulated in the NA-resistant E. coli strains. The changes at the level of protein expression were validated using Western blotting. Furthermore, the possible roles these altered proteins played in regulation of NA resistance were investigated using genetically modified strains with the deletion of these genes. The results obtained from functional characterization of these genetically modified strains suggest that TolC and OmpC may play more important roles in the control of NA resistance than other OM proteins identified. To gain better understanding of the mechanisms of NA resistance, we also characterized the role of the two-component system EnvZ/OmpR which is responsible for the regulation of OmpC and OmpF expression in response to NA resistance using their genetically modified strains. Our results suggest that OmpF and the EnvZ/OmpR are also important participants of the pathways regulating the NA resistance of E. coli.  相似文献   

5.
Summary High level lincomycin resistant strains of Escherichia coli were isolated and screened for altered ribosomal proteins and functions. Amongst 58 strains investigated by electrophoresis one had an altered ribosomal protein S7, another one a mutated L14 and two showed altered L15 proteins.A correlation between these alterations and lincomycin resistant growth could not be demonstrated by genetic analysis for any of the mutants. In vitro, however, extracts from the two L15 mutants were less sensitive to inhibition by the drug. A gene locus (lin R) responsible for the lincomycin resistance phenotype was mapped at min 30 of the Escherichia coli chromosome near tyrR; it seems to be identical to the previously described linB locus (Apirion, 1967); however, in contrast to these reports it does not seem to alter any ribosomal function.  相似文献   

6.
Transport of nalidixic acid (NAL) into Escherichia coli cells subjected to osmotic shock, permeabilised with toluene or treated with DNP, CCCP or EDTA, was studied. It was found that osmotic shock and protonophores do not inhibit the transport of [3H]NAL, however, the transport of [3H]DAP and [3H]glucose is reduced. EDTA and toluene enhance penetration of [3H]NAL. This effect is, however, abolished in the presence of Mg++ ions. It is suggested that NAL penetrates into the cell by simple or facilitated diffusion and that the outer membrane of E. coli is the penetration barrier for the drug.  相似文献   

7.
The high antibacterial activity of nalidixic acid against Escherichia coli, cultivated in raw and pasteurized milk has been shown. The low oxygen reduction potential had no influence on the antibacterial activity of this drug. The natural antibacterial agents in active milk from an inflamed udder have reduced the efficacy of nalidixic acid inhibition of the growth of E. coli.  相似文献   

8.
The ability of several Escherichia coli strains deficient in recombination (rec) to survive in the presence of nalidixic acid was determined. Genetic blocks of the RecBC or the RecF pathways resulted in increased sensitivity to nalidixic acid when compared with the wild-type strain. Mutants lacking functional recA, recL, or recB recC recF genes showed the most rapid decrease in colony-forming ability when incubated with nalidixic acid. However, the uvrB gene also plays a role in maintaining cell viability.  相似文献   

9.
The effects of nalidixic acid in vitro on deoxyribonucleic acid (DNA)- polymerase (deoxyribonucleosidetriphosphate: DNA deoxynucleotidyltransferase, EC 2.7.7.7), deoxyribonucleotide kinases (ATP: deoxymono- and diphosphate phosphotransferases), and deoxyribosyl transferase (nucleoside: purine deoxyribosyltransferase, EC 2.4.2.6) were examined employing partially purified and crude extracts of Escherichia coli ATCC 11229 and E. coli 15TAU. Nalidixic acid had no inhibitory effect on the DNA-polymerase of the wild-type strain E. coli ATCC 11229 at concentrations of 1.4 x 10(-3) to 2.8 x 10(-3)m. No inhibition of deoxyribonucleotide kinase activity was observed at concentrations of nalidixic acid ranging from 2 x 10(-3) to 8.6 x 10(-3)m. Nalidixic acid (0.43 x 10(-4) to 0.43 x 10(-3)m) had no inhibitory effect on the deoxyribosyl transferase activity of crude extracts obtained from E. coli ATCC 11229 or E. coli 15TAU. Analytical CsCl density gradient centrifugation demonstrated that the DNA obtained after treatment of E. coli 15TAU with nalidixic acid was not cross-linked. These results suggest that the prevention of DNA synthesis in vivo by nalidixic acid is not attributable to inhibition of DNA polymerase, deoxyribonucleotide kinase, deoxyribosyl transferase, or to cross-linking of the DNA of treated cells.  相似文献   

10.
11.
Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously characterized acid resistance systems were tested. These included an acid-induced oxidative system, an acid-induced arginine-dependent system, and a glutamate-dependent system. When challenged at pH 2.0, the arginine-dependent system provided more protection in the EHEC strains than in commensal strains. However, the glutamate-dependent system provided better protection than the arginine system and appeared equally effective in all strains. Because E. coli must also endure acid stress imposed by the presence of weak acids in intestinal contents at a pH less acidic than that of the stomach, the ability of specific acid resistance systems to protect against weak acids was examined. The arginine- and glutamate-dependent systems were both effective in protecting E. coli against the bactericidal effects of a variety of weak acids. The acids tested include benzoic acid (20 mM; pH 4.0) and a volatile fatty acid cocktail composed of acetic, propionic, and butyric acids at levels approximating those present in the intestine. The oxidative system was much less effective. Several genetic aspects of E. coli acid resistance were also characterized. The alternate sigma factor RpoS was shown to be required for oxidative acid resistance but was only partially involved with the arginine- and glutamate-dependent acid resistance systems. The arginine decarboxylase system (including adi and its regulators cysB and adiY) was responsible for arginine-dependent acid resistance. The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach (pH 1 to 3) and the intestine (pH 4.5 to 7 with high concentrations of volatile fatty acids). Of particular importance to the food industry was the finding that once induced, the acid resistance systems will remain active for prolonged periods of cold storage at 4 degrees C.  相似文献   

12.
Cells of Escherichia coli K12 were sensitive to 100 mM-methylammonium when cultured under nitrogen limitation, and resistant when grown with an excess of either NH4Cl or glutamine. Glutamine synthetase activity was required for expression of the methylammonium-sensitive phenotype. Mutants were isolated which were resistant to 100 mM-methylammonium, even when grown under nitrogen limitation. P1 bacteriophage transduction and F' complementation analysis revealed that the resistance-conferring mutations mapped either inside the glnA structural gene and/or elsewhere in the E. coli chromosome. Glutamine synthetase was purified from the wild-type and from some of the mutant strains. Strains carrying glnA-linked mutations that were solely responsible for the methylammonium-resistant phenotype yielded an altered enzyme, which was less active biosynthetically with either ammonium or methylammonium as substrate. Sensitivity to methylammonium appeared to be due to synthesis of gamma-glutamylmethylamide by glutamine synthetase, which was synthesized poorly, if at all, by mutants carrying an altered glutamine synthetase enzyme.  相似文献   

13.
A glutamate-dependent acid resistance gene in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
Stationary-phase cultures of Escherichia coli can survive several hours or exposure to extreme acid (pH 2 to 3), a level well below the pH range for growth (pH 4.5 to 9). To identify the genes needed for survival in extreme acid, a microliter screening procedure was devised. Colonies from a Tn10 transposon pool in E. coli MC4100 were inoculated into buffered Luria broth, pH 7.0, in microtiter wells, grown overnight, and then diluted in Luria broth, pH 2.5, at 37 degrees C for 2 h. From 3,000 isolates screened, 3 Tet(r) strains were identified as extremely acid sensitive (<0.1% survival at pH 2.5 for 2 h). Flanking sequences of the Tn10 inserts were amplified by inverse PCR. The sequences encoded a hydrophobic partial peptide of 88 residues. A random-primer-generated probe hybridized to Kohara clones 279 and 280 at 32 min (33.7 min on the revised genomic map EcoMap7) near gadB (encoding glutamate decarboxylase). The gene was designated xasA for extreme acid sensitive. xasA::Tn10 strains grown at pH 7 to 8 showed 100-fold-less survival in acid than the parent strain. Growth in mild acid (pH 5 to 6) restored acid resistance; anaerobiosis was not required, as it is for acid resistance in rpoS strains. xasA::Tn10 eliminated enhancement of acid resistance by glutamic acid. xasA was found to be a homolog of gadC recently sequenced in Shigella flexneri, in which it appears to encode a permease for the decarboxylated product of GadB. These results suggest that GadC (XasA) participates in a glutamate decarboxylase alkalinization cycle to protect E. coli from cytoplasmic acidification. The role of the glutamate cycle is particularly important for cultures grown at neutral pH before exposure to extreme acid.  相似文献   

14.
We isolated 607 independent nalidixic acid-resistant mutants from Bacillus subtilis. A 163 by DNA segment from a 5′ portion of the gyrA gene was amplified from the DNA of each mutant strain. After heat denaturation, the product was subjected to gel electrophoresis to detect conformational polymorphism of single-strand DNA (PCR-SSCP analysis). Mobility patterns of the two DNA strands from all the mutant strains examined differed from those of the parental wild-type strains. The patterns were classified into 13 types, and the DNA sequence of each type was determined. A unique sequence alteration was found in mutants belonging to each of the 13 types, defining 13 gyrA alleles. Eight were single base pair substitutions, four were substitutions of two consecutive base pairs, and one was a substitution of three consecutive base pairs. Only three amino acid residues (Ser-84, Ala-85, and Glu-88) were altered in the deduced amino acid sequences of the mutated genes. We conclude that molecular typing based on the PCR-SSCP method is a powerful technique for the exhaustive identification of allelic variants among mutants selected for a phenotypic trait.  相似文献   

15.
Nine independent mutants deficient in tryptophanase activity were isolated. Each mutation was transferred to a specialized transducing phage that carries the tryptophanase region of the Escherichia coli chromosome. The nine phages thus produced, and a tenth carrying a previously characterized tryptophanase mutation, were used to lysogenize a bacterial strain harbouring a mutation in the tryptophanase structural gene and also a suppressor of polarity. In no case was complementation observed; we conclude that there is no closely linked positive regulatory gene for tryptophanase.  相似文献   

16.
Diffusion of nalidixic acid (NAL), DNA synthesis and filamentation of Escherichia coli K-12 cells induced by the drug were investigated in the division cycle. It was found that in nonsynchronous culture and within the range of sublethal NAL concentrations the length of the filaments depends on the dose or the time of action of the drug. In synchronous culture differences are observed in the values of measured parametres between samples from the successive culture phases. Maximum [3H] NAL penetration and DNA synthesis inhibition caused by the drug were noted in the period proceeding directly division. The extent of NAL penetration into the cell in the sample is correlated with the change in length of the NAL-induced filamentous cells.  相似文献   

17.
Deitz, William H. (Sterling-Winthrop Research Institute, Rensselaer, N.Y.), Thomas M. Cook, and William A. Goss. Mechanism of action of nalidixic acid on Escherichia coli. III. Conditions required for lethality. J. Bacteriol. 91:768-773. 1966.-Nalidixic acid selectively inhibited deoxyribonucleic acid (DNA) synthesis in cultures of Escherichia coli 15TAU. Protein and ribonucleic acid synthesis were shown to be a prerequisite for the bactericidal action of the drug. This action can be prevented by means of inhibitors at bacteriostatic concentrations. Both chloramphenicol, which inhibits protein synthesis, and dinitrophenol, which uncouples oxidative phosphorylation, effectively prevented the bactericidal action of nalidixic acid on E. coli. The lethal action of nalidixic acid also was controlled by transfer of treated cells to drug-free medium. DNA synthesis resumed immediately upon removal of the drug and was halted immediately by retreatment. These studies indicate that nalidixic acid acts directly on the replication of DNA rather than on the "initiator" of DNA synthesis. The entry of nalidixic acid into cells of E. coli was not dependent upon protein synthesis. Even in the presence of an inhibiting concentration of chloramphenicol, nalidixic acid prevented DNA synthesis by E. coli 15TAU.  相似文献   

18.
The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.  相似文献   

19.
Significant portion (up to 20%) of dominant mutations (rifd mutations) was observed among spontaneous mutations of rifampicin resistance picked up in cells of haploid Escherichia coli strain. These mutations are similar to rifd mutations obtained earlier when selecting them in rif-s/rif-s merodiploids. On the basis of analysis of nucleotide substitutions taking place in formation of spontaneous and induced mutations, it is established that rifd mutations are caused by single nucleotide substitution. The majority of rifd mutations are localized in a small region of the central part of RNA polymerase beta-subunit gene covering less than 200 base pairs. A rifd mutant has been described which occurred as a result of micro-deletion in one of the "hot" spots of the central region of beta-subunit gene.  相似文献   

20.
The secA gene product is an autoregulated, membrane-associated ATPase which catalyzes protein export across the Escherichia coli plasma membrane. Previous genetic selective strategies have yielded secA mutations at a limited number of sites. In order to define additional regions of the SecA protein that are important in its biological function, we mutagenized a plasmid-encoded copy of the secA gene to create small internal deletions or duplications marked by an oligonucleotide linker. The mutagenized plasmids were screened in an E. coli strain that allowed the ready detection of dominant secA mutations by their ability to derepress a secA-lacZ protein fusion when protein export is compromised. Twelve new secA mutations were found to cluster into four regions corresponding to amino acid residues 196 to 252, 352 to 367, 626 to 653, and 783 to 808. Analysis of these alleles in wild-type and secA mutant strains indicated that three of them still maintained the essential functions of SecA, albeit at a reduced level, while the remainder abolished SecA translocation activity and caused dominant protein export defects accompanied by secA depression. Three secA alleles caused dominant, conditional-lethal, cold-sensitive phenotypes and resulted in some of the strongest defects in protein export characterized to date. The abundance of dominant secA mutations strongly favors certain biochemical models defining the function of SecA in protein translocation. These new dominant secA mutants should be useful in biochemical studies designed to elucidate SecA protein's functional sites and its precise role in catalyzing protein export across the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号