首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of unilateral and bilateral destruction of the inferior colliculus on the sensitivity of the auditory system, on parameters of the sonor signals, and on Doppler shift compensation in echo signals was studied in experiments on horseshoe bats (Rhinolophus ferrum-equinum). The results show that complete bilateral destruction of the inferior colliculus in bats does not lead to total disturbance of function of the auditory system but it sharply reduces the sensitivity of that system, as shown by a decrease in the maximal obstacle detection range and inability to respond to an insect emitting a feeble sound. It can also be concluded that the inferior colliculus plays a direct part in maintenance of the emission frequency and that different parts of the inferior colliculus play different roles in this process. The Doppler shift compensation effect requires preservation of the integrity of not less than half of the central nucleus of at least one inferior colliculus.A. A. Ukhtomskii Physiological Institute, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 375–381, July–August, 1980.  相似文献   

2.
Summary Auditory response properties were studied in the superior colliculus (SC) of the echolocating horseshoe bat Rhinolophus rouxi, a long CF-FM bat, by the use of stationary, dichotic stimuli.The most striking finding in the horseshoe bat was an enormous overrepresentation of neurons with best frequencies in the range of the constant frequency component of the species specific echolocation call (72% of the auditory neurons). These neurons had response thresholds as low as 0 dB SPL and were narrowly tuned with Q10 dB — values up to 400, just as in the nuclei of the primary auditory pathway in this species. This overrepresentation may suggest the importance of the superior colliculus in the context of echolocation behavior.While noise stimuli were not particularly effective, other auditory response properties were similar to those described in other mammals. 65% of the SC neurons in the horseshoe bat responded only to monaural stimulation of one ear, primarily the contralateral one. 32% of the neurons received monaural input from both ears. The proportion of neurons responsive to ipsilateral stimulation (41%) was rather high. Mean response latency was 8.9 ms for contralateral stimulation.A tonotopic organization is lacking, but high-frequency neurons are less frequent in rostral SC.Abbreviations CF constant frequency component of echolocation call; - >CF frequencies above range of CF-component - FM frequency modulated component of echolocation call - <FM frequencies below range of FM-component - RF resting frequency of an individual bat - Rh.r. Rhinolophus rouxi - SC superior colliculus  相似文献   

3.
(1) Responses of auditory interneurones were recorded intracellularly within the metathoracic ganglion of the locust when stimulating each tympanic membrane with a piezoelectric transducer. Thus, in contrast to conventional sound stimulation, each of the two ears could be activated independently from the other at variable intensities, duration and stimulus onsets. By means of this ‘earphone-like’ stimulation technique the binaural integration properties of auditory interneurons could be analysed. (2) A minority of units (3 out of 43) was affected by input from one side only. Their synaptic input was purely excitatory and the intensity characteristics reflected those of auditory receptor fibres. (3) Most interneurones received input from both ears, each being excitatory or one excitatory or one excitatory and one inhibitory. In some units the unilateral synaptic response already included both an EPSP and an IPSP. As a result of varying temporal interactions between the EPSP and the IPSP within the unilaterally evoked complex response the intensity characteristics differed widely from unit to unit. (4) With binaural simultaneous stimulation the complexity of the postsynaptic responses of most interneurones increased as the synaptic input from both ears coincided at the level of the recorded interneurone. Although both ears were stimulated symmetrically (at the same time and intensity), units were recorded where the latencies of ipsilateral and contralateral synaptic input were different. Contralateral inhibition could either follow or precede ipsilateral excitation and in some cases both EPSP and IPSP had the same latency. On the basis of these findings the binaural synaptic mechanisms of directional coding are discussed and compared with corresponding results under free field stimulus conditions.  相似文献   

4.
A cytophotometric study of sections stained with gallocyanin and chrome alum showed that monaural stimulation for 2 h and binaural stimulation for 1.5 h with rhythmic noise signals led to a marked increase in the cytoplasmic RNA content per cell in the principal and large multipolar neurons of the dorsal and ventral parts of the ventrolateral region of the central nucleus of the inferior colliculus. The increase in cytoplasmic RNA content in the principal cells of the ipsiand contralateral parts of this nucleus relative to the stimulated ear in the case of monaural stimulation and the increase in RNA content in response to binaural stimulation suggests a uniform distribution of bilaterally converging connections from the lower nuclei of the auditory system on the principal cells. The increase in cytoplasmic RNA in the large multipolar cells of the contralateral central nucleus in response to monaural stimulation is evidence of the predominantly contralateral projection to these cells. The results are evidence of convergence of binaural influences on the principal and large multipolar cells of the central nucleus of the inferior colliculus.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 598–605, November–December, 1978.  相似文献   

5.
The responses of single units and evoked potentials to a pair of artificial sounds, mimicking theorientation sound and echo, and to tape recorded actual orientation sounds were studied in terms of recovery cycle. the recovery cycle of single units could be classified into four groups: (1) short suppression (4%), (2) delayed inhibition (11%), (3) temporal recovery with or without a supernormal phase (7%), and (4) undelayed inhibition (78%) lasting 4 to 26 msec. therefore the majority of neurons were not excited by the second sound (echo) of a pair when it was delivered within several milliseconds after the first (out-going orientation sound). the duration of the recovery cycle was a function of the intensity of a pair of sounds. the weaker the first tone pulse relative to the second, the more rapid the recovery to the second. therefore, the reception of echoes is probably improved by contraction of middle ear muscles resulting in attenuation of self-stimulation by the out-going pulse. The collicular evoked potential consisted of two components, a fast one mainly due to the incoming fibers from lower levels and a slow one due to the main body of the inferior colliculus. The slow component showed slow recovery cycles as did the majority of single units while the fast one recovered very quickly. No noticeable difference in recovery cycles was found between awake and anesthetized animals. The functional meaning of inhibitory periods in the recovery cycle and role of the inferior colliculus in echo-location are discussed.  相似文献   

6.
7.
8.
9.
Summary Single neuron responses to sinusoidally amplitude modulated (SAM) signals were studied in the inferior colliculus of the horseshoe bat,Rhinolophus rouxi.57% of the neurons responded to SAM stimuli with periodical discharges synchronized to the modulation cycle. The proportion of cells driven by amplitude modulated signals was independent of the best frequency of the neurons. Best modulation frequencies were at or below 100 Hz in about 70% of the neurons. Synchronized activity could be elicited by modulation frequencies up to 400 Hz.Best SAM responses were observed at stimulus intensities 10 dB above threshold. Generally the BMF of a neuron did not change with intensity. The BMF decreased with decreasing modulation depth of the amplitude modulation.A trend for a topographical organization of neurons according to best modulation frequencies was detected. The results did not reveal any significant specialization of the bat's auditory system for coding of amplitude modulations as compared to other mammals.Abbreviations BF best frequency - BMF best modulation frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - SAM sinusoidal amplitude modulation - SFM sinusoidal frequency modulation  相似文献   

10.
Summary This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.Abbreviations BF best frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - IHC inner hair cell; - OHC outer hair cell - RR Rhinolophus rouxi  相似文献   

11.
12.
Single-unit recordings were made from 143 neurons in the frog (Rana p. pipiens) inferior colliculus (IC) to investigate how free-field sound direction influenced neural responses to sinusoidal-amplitude-modulated (SAM) tone and/or noise. Modulation transfer functions (MTFs) were derived from 3 to 5 sound directions within 180° of frontal field. Five classes of MTF were observed: low-pass, high-pass, band-pass, multi-pass, and all-pass. For 64% of IC neurons, the MTF class remained unchanged when sound direction was shifted from contralateral 90° to ipsilateral 90°. However, the MTFs of more than half of these neurons exhibited narrower bandwidths when the loudspeaker was shifted to ipsilateral azimuths. There was a decrease in the cut-off frequency for neurons possessing low-pass MTFs, an increase in cut-off frequency for neurons showing high-pass MTFs, or a reduction in the pass-band for neurons displaying bandpass MTFs. These results suggest that sound direction can influence amplitude modulation (AM) frequency tuning of single IC neurons.Since changes in periodicity of SAM tones alter both the temporal parameters of sounds as well as the sound spectrum, we examined whether directional effects on spectral selectivity play a role in shaping the observed direction-dependent AM selectivity. The directional influence on AM selectivity to both SAM tone and SAM noise was measured in 62 neurons in an attempt to gain some insight into the mechanisms that underlie directionally-induced changes in AM selectivity. Direction-dependent changes in the shapes of the tone and noise derived MTFs were different for the majority of IC neurons (55/62) tested. These data indicate that a spectrally-based and a temporally-based mechanism may be responsible for the observed results.Abbreviations AM amplitude modulation - CF characteristic frequency - DI direction index - FR isointensity frequency response - GABA gamma-aminobutyric acid - IC inferior colliculus - ICc central nucleus of the inferior colliculus - ITD interaural time difference - MTF modulation transfer function - PSTH peri-stimulus time histogram - SAM sinusoidal-amplitude-modulated - SC synchronization coefficient - CN cochlear nucleus  相似文献   

13.
Microfluorometric recordings showed that the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated transient increases in the intracellular Cl- concentration in neurons of the inferior colliculus (IC) from acutely isolated slices of the rat auditory midbrain. Current recordings in gramicidin-perforated patch mode disclosed that GABA and glycine mainly evoked inward or biphasic currents. These currents were dependent on HCO3- and characterized by a continuous shift of their reversal potential (E(GABA/gly)) in the positive direction. In HCO3- -buffered saline, GABA and glycine could also evoke an increase in the intracellular Ca2+ concentration. Ca2+ transients occurred only with large depolarizations and were blocked by Cd2+, suggesting an activation of voltage-gated Ca2+ channels. However, in the absence of HCO3-, only a small rise, if any, in the intracellular Ca2+ concentration could be evoked by GABA or glycine. We suggest that the activation of GABAA or glycine receptors results in an acute accumulation of Cl- that is enhanced by the depolarization owing to HCO3- efflux, thus shifting E(GABA/gly) to more positive values. A subsequent activation of these receptors would result in a strenghtened depolarization and an enlarged Ca2+ influx that might play a role in the stabilization of inhibitory synapses in the auditory pathway.  相似文献   

14.
降雨噪声属于常见的自然噪声,由雨滴撞击物体表面产生。目前,有关降雨噪声对动物的潜在影响被普遍忽视。回声定位蝙蝠主要利用声信号在黑暗环境导航空间、探测猎物及社群交流,是开展降雨噪声影响研究的理想类群。本研究选择菲菊头蝠 (Rhinolophus pusillus)作为研究对象,检验降雨噪声是否影响蝙蝠出飞行为。我们在集群栖息地外,播放强降雨噪声、空白对照和种内回声定位声波,开展野外回放实验。利用单因素方差分析及其事后检验,评价菲菊头蝠对不同回放刺激的反应差异。研究发现,相比空白对照,强降雨噪声导致菲菊头蝠的通勤数量百分比平均降低2.82倍,回声定位脉冲数量平均减少4.86倍,集群出飞时间延长3.75 min。相比空白对照,同种回声定位声波对菲菊头蝠出飞行为的影响并不显著。研究结果证实强降雨噪声抑制菲菊头蝠的出飞行为。本研究表明,降雨引起 的噪声干扰可能是导致蝙蝠躲避降雨的重要因素,为野生蝙蝠物种保育与管理提供启示。  相似文献   

15.
The character of binaural competitive connections at the level of the superior olive was investigated cytospectrophotometrically in cats. As a result of monaural stimulation for 2 h or binaural stimulation for 1.5 h by rhythmic noise signal the RNA content in the neurons of the ipsilateral and contralateral medial and lateral nuclei increased significantly. The volume of functioning neurons in the nuclei studied either increased or remained the same as in the control. The increase in the RNA content in neurons of both the ipsilateral and contralateral medial and lateral nuclei suggests a uniform distribution of binaurally converging connections on the neurons of these nuclei. The results also suggest that the accumulation of cytoplasmic RNA takes place in response not only to excitation, but also to inhibition.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 67–74, January–February, 1978.  相似文献   

16.
Single-channel conductance in Cys-loop channels is controlled by the nature of the amino acids in the narrowest parts of the ion conduction pathway, namely the second transmembrane domain (M2) and the intracellular helix. In cationic channels, such as Torpedo ACh nicotinic receptors, conductance is increased by negatively charged residues exposed to the extracellular vestibule. We now show that positively charged residues at the same loop 5 position boost also the conductance of anionic Cys-loop channels, such as glycine (α1 and α1β) and GABA(A) (α1β2γ2) receptors. Charge reversal mutations here produce a greater decrease on outward conductance, but their effect strongly depends on which subunit carries the mutation. In the glycine α1β receptor, replacing Lys with Glu in α1 reduces single-channel conductance by 41%, but has no effect in the β subunit. By expressing concatameric receptors with constrained stoichiometry, we show that this asymmetry is not explained by the subunit copy number. A similar pattern is observed in the α1β2γ2 GABA(A) receptor, where only mutations in α1 or β2 decreased conductance (to different extents). In both glycine and GABA receptors, the effect of mutations in different subunits does not sum linearly: mutations that had no detectable effect in isolation did enhance the effect of mutations carried by other subunits. As in the nicotinic receptor, charged residues in the extracellular vestibule of anionic Cys-loop channels influence elementary conductance. The size of this effect strongly depends on the direction of the ion flow and, unexpectedly, on the nature of the subunit that carries the residue.  相似文献   

17.
18.
蝙蝠在维护生态系统中的作用   总被引:2,自引:0,他引:2  
蝙蝠是世界上分布最广、种群数量最多、进化最成功的哺乳动物类群之一,它们在维护生态系统中具有重要的作用:蝙蝠在生态系统中占据了独特的生存空间;蝙蝠是许多农、林及卫生害虫的天敌;蝙蝠是种子的传播者和花粉的传授者;在一定生态系统中蝙蝠可能起到关键种的作用;食虫蝙蝠粪便和酮体均是我国传统中药中的主要药材之一。研究和保护蝙蝠在维护生态环境中具有十分重要的意义。  相似文献   

19.
利用听觉诱发电位和计算机叠加平均技术研究了普氏蹄蝠下丘(Inferior colliculus,IC)500-4 000 μm 记录深度间,神经元群对3 个谐波恒频(Constant frequency,CF) 声刺激(CF1 -CF3 )的反应。结果显示,在蝙蝠回声定位信号CF 成分刺激下,其IC 的诱发电位包括2 -4 个波,在1 000 μm 以下的记录区域,3 种刺激均能诱发on-off 反应,on-反应的幅度均在3 000 μm 达最大之后减小(P < 0.001),而潜伏期则逐渐缩短(P < 0.001);CF2 能诱发大幅度的off-反应,而CF1 、CF3 诱发的off-反应幅度较小,随着记录深度的增加,CF2 (P <0. 001)的off-反应潜伏期逐渐缩短,而CF1 (P > 0. 05)和CF3 (P >0. 05)的潜伏期则无此单调性。结果表明神经元群体加工CF1 - CF3 的on-反应存在一致性变化,提示其对行为相关的声信号加工可能存在频率层间复杂的相互作用;对CF 信号加工的off-反应对主频附近声较敏感,提示其可能在恒频-调频蝙蝠的多普勒频移、捕获振翅昆虫信息或种间交流中起着某种作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号