首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The capacity of species to track changing environmental conditions is a key component of population and range changes in response to environmental change. High levels of local adaptation may constrain expansion into new locations, while the relative fitness of dispersing individuals will influence subsequent population growth. However, opportunities to explore such processes are rare, particularly at scales relevant to species-based conservation strategies. Icelandic black-tailed godwits, Limosa limosa islandica, have expanded their range throughout Iceland over the last century. We show that current male morphology varies strongly in relation to the timing of colonization across Iceland, with small males being absent from recently occupied areas. Smaller males are also proportionately more abundant on habitats and sites with higher breeding success and relative abundance of females. This population-wide spatial structuring of male morphology is most likely to result from female preferences for small males and better-quality habitats increasing both small-male fitness and the dispersal probability of larger males into poorer-quality habitats. Such eco-evolutionary feedbacks may be a key driver of rates of population growth and range expansion and contraction.  相似文献   

2.
Species ranges are expected to expand along their cooler boundaries in response to rising temperatures associated with current global climate change. However, this ‘fingerprint’ of climate change is yet to be assessed for an entire flora. Here, we examine patterns of altitudinal range change in the complete native vascular flora of sub‐Antarctic Marion Island. We demonstrate a rapid mean upslope expansion in the flora since 1966, in response to 1.2 °C warming on the island. The 3.4±0.8 m yr?1 (mean±SE) upslope expansion rate documented is amongst the highest estimates from partial floras. However, less than half of the species in the flora were responsible for the expansion trend, demonstrating that the global fingerprint of warming may be driven by a highly responsive subset of the species pool. Individual range expansion rates varied greatly, with species‐specific niche requirements explaining some of this variation. As a result of the idiosyncratic expansion rates, altitudinal patterns of species richness and community composition changed considerably, with the formation of no‐analog communities at high and intermediate altitudes. Therefore, both species‐ and community‐level changes have occurred in the flora of Marion Island over a relatively short period of rapid warming, demonstrating the sensitivity of high latitude communities to climate change. Patterns of change within this flora illustrate the range of variation in species responses to climate change and the consequences thereof for species distributions and community reorganization.  相似文献   

3.
Wegmann D  Currat M  Excoffier L 《Genetics》2006,174(4):2009-2020
Recent range expansions have probably occurred in many species, as they often happen after speciation events, after ice ages, or after the introduction of invasive species. While it has been shown that range expansions lead to patterns of molecular diversity distinct from those of a pure demographic expansion, the fact that many species do live in heterogeneous environments has not been taken into account. We develop here a model of range expansion with a spatial heterogeneity of the environment, which is modeled as a gamma distribution of the carrying capacities of the demes. By allowing temporal variation of these carrying capacities, our model becomes a new metapopulation model linking ecological parameters to molecular diversity. We show by extensive simulations that environmental heterogeneity induces a loss of genetic diversity within demes and increases the degree of population differentiation. We find that metapopulations with low average densities are much more affected by environmental heterogeneity than metapopulations with high average densities, which are relatively insensitive to spatial and temporal variations of the environment. Spatial heterogeneity is shown to have a larger impact on genetic diversity than temporal heterogeneity. Overall, temporal heterogeneity and local extinctions are not found to leave any specific signature on molecular diversity that cannot be produced by spatial heterogeneity.  相似文献   

4.
Biological invasions represent ideal systems for the study of evolutionary processes associated with colonization events. It has been hypothesized that the genetic diversity is generally decreasing from the centre of the range to the margins due to multiple founder events. Invasive populations offer the opportunity to test this hypothesis at a fine spatial and temporal scale. We analysed the genetic structure of a large expanding non-native population of the Common Wall Lizard (Podarcis muralis) in Passau (Germany) using thirteen microsatellite loci. We analyzed the genetic structure and levels of admixture across a transect reflecting the expansion process and tested for a loss of genetic diversity and an increase of genetic differentiation from the centre to the invasion front. Our results demonstrate that significant genetic population structure can emerge rapidly at a small spatial scale. We found a trend for an increase in genetic differentiation and a decrease in genetic diversity from the invasion centre to the expanding range margin, suggesting that genetic drift is the major factor causing this pattern. The correlation between genetic diversity and average genetic differentiation was significant among sites. We hypothesize that the territoriality of P. muralis generates sufficient rates of noncontiguous and stratified dispersal from longer established sites to maintain significant genetic diversity at the invasion front. Simultaneously, territoriality might restrict the colonization success of migrants at established sites, so that in combination with founder events a strong differentiation arises.  相似文献   

5.
Abstract Understanding the mechanisms of adaptation to spatiotemporal environmental variation is a fundamental goal of evolutionary biology. This issue also has important implications for anticipating biological responses to contemporary climate warming and determining the processes by which invasive species are able to spread rapidly across broad geographic ranges. Here, we compare data from a historical study of latitudinal variation in photoperiodic response among Japanese and U.S. populations of the invasive Asian tiger mosquito Aedes albopictus with contemporary data obtained using comparable methods. Our results demonstrated rapid adaptive evolution of the photoperiodic response during invasion and range expansion across ~15° of latitude in the United States. In contrast to the photoperiodic response, size-based morphological traits implicated in climatic adaptation in a wide range of other insects did not show evidence of adaptive variation in Ae. albopictus across either the U.S. (invasive) or Japanese (native) range. These results show that photoperiodism has been an important adaptation to climatic variation across the U.S. range of Ae. albopictus and, in conjunction with previous studies, strongly implicate the photoperiodic control of seasonal development as a critical evolutionary response to ongoing contemporary climate change. These results also emphasize that photoperiodism warrants increased attention in studies of the evolution of invasive species.  相似文献   

6.
Quantifying energy dissipation by grazing animals in harsh environments   总被引:1,自引:0,他引:1  
Grazing systems in harsh environments are common throughout the world, and animal production is the mainstay of the livelihoods of many resource-poor farmers. The energy cost of the various activities involved in the process of harvesting the pasture to transform it into animal product can be estimated through an energy balance. This cost would be the difference between the metabolizable energy intake (MEI) and the energy expenditures for maintenance (MEm), temperature regulation (MEtr), and the energy for production (MEp). Each of the ME has its own net energy (NE) and its associated efficiency (K). When MEI>MEm+MEtr+MEp, the difference is attributable to the energy dissipated during grazing. The efficiency of converting the energy consumed into animal products depends on the magnitude of the dissipation. The inefficiency is associated with the energy spent in locomotion and the stress produced when there is low availability of energy in the pasture. This paper presents a method to quantify the dissipation of energy by grazing animals by considering it as a function of available energy. Such an understanding is required in order to develop management strategies to increase conversion efficiency.  相似文献   

7.
Individual learning and social learning are two primary abilities supporting cultural evolution. Conditions for their evolution have mostly been studied by investigating gene frequency dynamics, which essentially implies constant population size. Predictions from such “static” models may only be of partial relevance to the evolution of advanced individual learning in modern humans, because modern humans have experienced rapid population growth and range expansion during “out-of-Africa.” Here we model the spatial population dynamics of individual and social learners by a reaction–diffusion system. One feature of our model is the inclusion of the possibility that social learners may fail to find an exemplar to copy in regions where the population density is low. Due to this attenuation effect, the invasion speed of social learners is diminished, and various kinds of invasion dynamics are observed. Our primary findings are: (1) individual learners can persist indefinitely when invading environmentally homogeneous infinite space; (2) the occurrence of individual learners at the front may inhibit the spread of social learners. These results suggest that “out-of-Africa” may have driven the evolution of advanced individual learning ability in modern humans.  相似文献   

8.
Species distribution models (SDMs) assume equilibrium between species' distribution and the environment. However, this assumption can be violated under restricted dispersal and spatially autocorrelated environmental conditions. Here we used a model to simulate species' ranges expansion under two non-equilibrium scenarios, evaluating the performance of SDM coupled with spatial eigenvector mapping. The highest fit is for the models that include space, although the relative importance of spatial variables during the range expansion differs in the two scenarios. Incorporating space to the models was important only under colonization-lag non-equilibrium, under the expected scenario. Thus, mechanisms that generate range cohesion and determine species' distribution under climate changes can be captured by spatial modelling, with advantages compared with other techniques and in line with recent claims that SDMs have to account for more complex dynamic scenarios.  相似文献   

9.
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii . We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 118–127.  相似文献   

10.
Individuals of clonal plants consist of physically and physiologically connected ramets. In splitters, they are integrated for a time shorter than ramet generation time (i.e. the time it takes to produce the first offspring ramet), whereas in integrators connections between ramets persist for a longer time. It has been predicted that integrators should prevail in stressful environments, such as habitats poor in nutrients, whereas splitters are expected to dominate in benign habitats, such as fertile areas with a moderate climate. I tested these predictions in four dry mountain areas of the Trans-Himalaya, in high altitudes subjected to multiple stresses. In accordance with the expectations I found that clonal plants with integrated ramets reach higher mean and maximum altitudes than splitters. Integrators were over-represented in nutrient-poor habitats, such as dry semi-deserts, sandy steppes and in subnival habitats, whereas splitters preferentially colonised mesic habitats, saline sites and wetlands. While there was no difference in the representation of splitters and integrators in habitats with an unstable surface, such as screes, dunes and water bodies, fully integrated clonal plants preferred very stable environments, such as banks of streams covered by closed-canopy vegetation. Most relationships between clonal integration and environmental factors were explainable by the phylogenetic relationship between the species, only the significant preference of splitters for shaded environments persisted in phylogenetically corrected analysis. The results indicate that clonal integration belongs to a set of evolutionarily conservative plant traits, usually shared by related species. Consequently, the adaptive value of clonal integration in individual habitats remains questionable.  相似文献   

11.
《Journal of bryology》2013,35(1):23-31
Abstract

The forests of Juniperus thurifera are peculiar ecosystems that typically grow on mountains and highplateaux of the western Mediterranean basin with dry and continental climates. Some previous surveys suggested that these forests house a rather distinctive epiphytic bryophyte flora. Epiphytic bryophyte communities were systematically sampled in 19 representative juniper forests, for the first time spanning all the distribution area of this conifer. The flora consists of 44 species (32 acrocarpous mosses, 10 pleurocarpous mosses and 2 liverworts). Orthotrichum species are the most frequent and abundant in most of the sampled localities, including some uncommon taxa such as Orthotrichum vittii which shows a clear association with J. thurifera. Epiphytic bryophyte communities on this species were highly homogeneous, although they can be arranged into different groups in response to environmental conditions. Typically, the epiphytic communities of the Mediterranean juniper forests comprise a distinct combination of xerophytic taxa that enhances the interest of these ecosystems and provides new fields for their research and conservation.  相似文献   

12.
13.
Previous studies have suggested that the ability to inhabit harsh environments may be linked to advanced learning traits. However, it is not clear if individuals express such traits as a consequence of experiencing challenging environments or if these traits are inherited. To assess the influence of differential selection pressures on variation in aspects of cognition, we used a common garden approach to examine the response to novelty and problem-solving abilities of two populations of black-capped chickadees (Poecile atricapillus). These populations originated from the latitudinal extremes of the species''s range, where we had previously demonstrated significant differences in memory and brain morphology in a multi-population study. We found that birds from the harsh northern population, where selection for cognitive abilities is expected to be high, significantly outperformed conspecifics from the mild southern population. Our results imply differences in cognitive abilities that may be inherited, as individuals from both populations were raised in and had experienced identical environmental conditions from 10 days of age. Although our data suggest an effect independent of experience, we cannot rule out maternal effects or experiences within the nest prior to day 10 with our design. Nevertheless, our results support the idea that environmental severity may be an important factor in shaping certain aspects of cognition.  相似文献   

14.
Short KH  Petren K 《PloS one》2011,6(10):e26258
Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (~1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.  相似文献   

15.
As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.  相似文献   

16.
We consider a new model for biological invasions in periodic patchy environments, in which long-range taxis and population pressure are incorporated in the framework of reaction-diffusion-advection equations. We assume that long-range taxis is induced by a weighted integral of stimuli within a certain sensing range. Population pressure is incorporated in the diffusion coefficient that linearly increases with population density. We first analyze the model in the absence of population pressure and demonstrate how the sensing length of long-range taxis influences the range expansion pattern of invasive species and its rate of spread. The effects of population pressure are examined for both homogeneous and periodic patchy environments. For the homogeneous environment, an exact and explicit traveling wave solution and the spreading speed are obtained. For the periodic patchy environment, we find numerically that a population starting from any localized distribution evolves to a traveling periodic wave if the null solution of the RDA equation is locally unstable, and that the traveling wave speed significantly increases with increasing population pressure. Furthermore, the population pressure and taxis intensity synergistically enhance the spreading speed when they are increased together.  相似文献   

17.
Zhang X  Wang L  Yuan Y  Tian D  Yang S 《The FEBS journal》2011,278(22):4323-4337
More than half of flowering plants have a sophisticated mechanism for self-pollen rejection, named self-incompatibility. In the Brassicaceae family, the recognition specificity of a self-incompatibility system is achieved by the interaction of the stigmatic S-receptor kinase and its ligand S-locus cysteine-rich protein, which are encoded by two tightly linked polymorphic genes. During the last two decades, many studies have explored their functions, although their origin and evolutionary history have still not been elucidated clearly. In the present study, an extensive survey in nine whole-genome sequenced plants, including one moss, one fern and seven flowering plants, was conducted to clarify these issues. The data obtained showed that S_locus_glycop domain-related genes, which are land plant specific, have an ancient origin that can be traced back to early land plants and also have a significantly expansion in flowering plants. In the four predominant domain architectures (Types I to IV) of these proteins, Type III genes had absolute predominance and appeared to be raw materials for diversification of the S_locus_glycop domain-related genes by frequent domain re-organizations. S-receptor kinase-like sequences (Type IV) might have originated from Type III genes by domain gains, and S-locus glycoprotein-like sequences (Type I) might have arisen by partial duplication of its linked S-receptor kinase genes. Although similar topologies were detected in S-receptor kinase and S-locus cysteine-rich protein trees, their physical linkage were found only in Brassicaceae, suggesting that the strong linkage disequilibrium and their co-evolution may be a key factor for the origin and maintenance of the S-receptor kinase-based self-incompatibility system in Brassicaceae.  相似文献   

18.
Marked changes in distribution in consequence of global warming have been observed not only for highly mobile insect taxa, which are capable of flight, but also for wing-dimorphic species with predominantly short-winged individuals. In the special case of wing-dimorphic species, it is likely that the rarer long-winged (macropterous) morph plays an important role in the dispersal process, but little is known about how and to what extent it is involved. The aim of our study was to provide more information on the mechanisms behind dispersal processes in wing-dimorphic insects at expanding range margins. As solitary individuals are believed to play an important role in the range expansion of wing-dimorphic species (potential dispersers), we recorded the number of long-winged and short-winged solitary males at the local range margin of our model organism Metrioptera roeselii (Orthoptera: Tettigoniidae) in NW Germany. To investigate differences in dispersal capability (% macropters) between populations with different colonisation histories, we studied 43 populations of M. roeselii. Our results show that about 2/3 of the solitary males were long-winged and these long-winged individuals were significantly more frequent in recently colonised areas. Moreover, M. roeselii had a significantly higher dispersal capability (% macropters) in high-density populations and in recently established populations at the expanding range margin compared to populations characterised by medium- or long-term establishment nearer to the range core. Our study is the first that quantifies the importance of macropters for the recent range expansion of a wing-dimorphic species and it provides for the first time detailed insights into the complex dispersal processes that take place at the expanding range margin. It is likely that density stress and a changed genetic predisposition to become macropterous, and thus a combination of both ecological and evolutionary effects, leads to a high percentage of macropters in recently colonised areas.  相似文献   

19.
Current approaches to modeling range advance assume that the distribution describing dispersal distances in the population (the "dispersal kernel") is a static entity. We argue here that dispersal kernels are in fact highly dynamic during periods of range advance because density effects and spatial assortment by dispersal ability ("spatial selection") drive the evolution of increased dispersal on the expanding front. Using a spatially explicit individual-based model, we demonstrate this effect under a wide variety of population growth rates and dispersal costs. We then test the possibility of an evolved shift in dispersal kernels by measuring dispersal rates in individual cane toads (Bufo marinus) from invasive populations in Australia (historically, toads advanced their range at 10 km/year, but now they achieve >55 km/year in the northern part of their range). Under a common-garden design, we found a steady increase in dispersal tendency with distance from the invasion origin. Dispersal kernels on the invading front were less kurtotic and less skewed than those from origin populations. Thus, toads have increased their rate of range expansion partly through increased dispersal on the expanding front. For accurate long-range forecasts of range advance, we need to take into account the potential for dispersal kernels to be evolutionarily dynamic.  相似文献   

20.
Since its appearance in 2006 in a freshwater section of the Rhine–Meuse estuary (Hollandsch Diep, The Netherlands), the non-indigenous quagga mussel has displayed a rapid range expansion in Western Europe. However, an overview characterising the spread and impacts of the quagga mussel in this area is currently lacking. A literature study, supplemented with field data, was performed to gather all available data and information relating to quagga mussel dispersal. Dispersal characteristics were analysed for rate and direction and in relation to hydrological connectivity and dispersal vectors. To determine ranges of conditions suitable for quagga mussel colonisation, physico-chemical characteristics of their habitats were analysed. After its initial arrival in the freshwater section of the Rhine-Meuse estuary and River Danube, the quagga mussel demonstrated a rapid and continued range expansion in Western Europe. Quagga mussels have extended their non-native range to the network of major waterways in The Netherlands and in an upstream direction in the River Rhine (Germany), its tributaries (rivers Main and Moselle) and the River Meuse (Belgium and France). The calculated average quagga mussel dispersal rate in Europe was 120 km year?1 (range 23–383 km year?1). Hydrological connectivity is important in determining the speed with which colonisation occurs. Dispersal to water bodies disconnected from the freshwater network requires the presence of a suitable vector e.g. pleasure boats transferred over land. Upstream dispersal is primarily human mediated through the attachment of mussels to watercraft. The relative abundance of quagga mussel to zebra mussel has greatly increased in a number of areas sampled in the major Dutch rivers and lakes and the rivers Main and Rhine and the Rhine–Danube Canal leading to a dominance shift from zebra mussels to quagga mussels. However, evidence for displacement of the zebra mussel is limited due to the lack of temporal trends relating to the overall density of zebra and quagga mussel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号