首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell‐to‐cell movement protein (NSM) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw‐5b‐mediated resistance, a dominant resistance gene which belongs to the class of SD‐CC‐NB‐LRR (Solanaceae domain‐coiled coil‐nucleotide‐binding‐leucine‐rich repeat, SD‐CNL) resistance genes. On transient expression of the NSM protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw‐5b gene, a hypersensitive cell death response (HR) is triggered. Here, it is shown that high accumulation of the Sw‐5b protein in N. benthamiana leaves, achieved by co‐expression of the Sw‐5b protein with RNA silencing suppressors (RSSs), leads to auto‐activity in the absence of NSM. In a similar approach, Sw‐5a, the highest conserved paralogue of Sw‐5b from Solanum peruvianum, also triggered HR by auto‐activation, whereas the highest conserved orthologue from susceptible S. lycopersicum, named Sw‐5aS, did not. However, neither of the last two homologues was able to trigger an NSM‐dependent HR. Truncated and mutated versions of these Sw‐5 proteins revealed that the NB‐ARC [nucleotide‐binding adaptor shared by Apaf‐1 (from humans), R proteins and CED‐4 (from nematodes)] domain is sufficient for the triggering of HR and seems to be suppressed by the SD‐CC domain. Furthermore, a single mutation was sufficient to restore auto‐activity within the NB‐ARC domain of Sw‐5aS. When the latter domain was fused to the Sw‐5b LRR domain, NSM‐dependent HR triggering was regained, but not in the presence of its own Sw‐5aS LRR domain. Expression analysis in planta revealed a nucleocytoplasmic localization pattern of Sw‐5b, in which the SD‐CC domain seems to be required for nuclear translocation. Although the Sw‐5 N‐terminal CC domain, in contrast with Rx, contains an additional SD, most findings from this study support a conserved role of domains within NB‐LRR (NLR) proteins against plant viruses.  相似文献   

2.
3.
The avirulence determinant triggering the resistance conferred by the tomato gene Sw‐5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance‐breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non‐resistance‐breaking (NRB)] in Nicotiana benthamiana expressing Sw‐5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell‐to‐cell and systemic transport of the chimeric AMV RNAs into N. tabacum with or without Sw‐5, except for the constructs with NBR when Sw‐5 was expressed, although RB2 showed reduced cell‐to‐cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co‐inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw‐5. These results indicate that NSm is the avirulence determinant for Sw‐5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system.  相似文献   

4.
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA‐binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear‐cytoplasmic trafficking is required for BSMV cell‐to‐cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95–104) and a nuclear localization signal (NLS) (amino acids 227–238). NoLS mutations reduced BSMV cell‐to‐cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine–arginine‐rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV‐infected cells, Fib2 accumulation increased by about 60%–70% and co‐localized with TGB1 in the plasmodesmata. In addition, BSMV cell‐to‐cell movement in fib2 knockdown transgenic plants was reduced to less than one‐third of that of non‐transgenic plants. Fib2 also co‐localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1–Fib2 interactions play a direct role in cell‐to‐cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell‐to‐cell movement.  相似文献   

5.
The biocontrol agent Pythium oligandrum and its elicitin‐like proteins oligandrins have been shown to induce disease resistance in a range of plants. In the present study, the ability of two oligandrins, Oli‐D1 and Oli‐D2, to induce an immune response and the possible molecular mechanism regulating the defence responses in Nicotiana benthamiana and tomato were investigated. Infiltration of recombinant Oli‐D1 and Oli‐D2 proteins induced a typical immune response in N. benthamiana including the induction of a hypersensitive response (HR), accumulation of reactive oxygen species and production of autofluorescence. Agrobacterium‐mediated transient expression assays revealed that full‐length Oli‐D1 and Oli‐D2 were required for full HR‐inducing activity in N. benthamiana, and virus‐induced gene silencing‐mediated knockdown of some of the signalling regulatory genes demonstrated that NbSGT1 and NbNPR1 were required for Oli‐D1 and Oli‐D2 to induce HR in N. benthamiana. Subcellular localization analyses indicated that both Oli‐D1 and Oli‐D2 were targeted to the plasma membrane of N. benthamiana. When infiltrated or transiently expressed in leaves, Oli‐D1 and Oli‐D2 induced resistance against Botrytis cinerea in tomato and activated the expression of a set of genes involved in the jasmonic acid/ethylene (JA/ET)‐mediated signalling pathway. Our results demonstrate that Oli‐D1 and Oli‐D2 are effective elicitors capable of inducing immune responses in plants, probably through the JA/ET‐mediated signalling pathway, and that both Oli‐D1 and Oli‐D2 have potential for the development of bioactive formulae for crop disease control in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号