首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The objectives of the present work were to investigate the presence of Clostridium perfringens in chicken meat parts (breast, wing, drumstick and leg quarter) by culture methods and to detect the cpa, cpb, etx, iA, cpe and cpb2 toxin genes by multiplex PCR. A total of 200 samples, the raw chicken breasts (n: 50), wings (n: 50), drumsticks (n: 50) and leg quarters (n: 50), were collected from various retail stores. Our results demonstrated that 47 of 50 wing samples (94%), 40 of 50 leg quarter samples (80%), 34 of 50 drumstick samples (66%) and 33 of 50 breast samples (66%) were found to be contaminated with Cl. perfringens. 558 positive isolates obtained from these samples were identified as Cl. perfringens based on the microscopic examination and biochemical tests. It was detected that 545 (97·6%) of 558 Cl. perfringens isolates carried only cpa toxin gene (type A), 12 (2·1%) of them carried both cpa and cpb2 toxin gene (type A‐cpb2), one (0·1%) of them carried both cpa and cpe toxin genes (type A‐cpe), according to the multiplex PCR results, targeted cpa, cpb, cpb2, cpe, etx and iA genes.

Significance and Impact of the Study

This study is the first report of detection of cpe and cpb2 toxin genes in Clostridium perfringens isolated from chicken meats in Turkey. The multiplex PCR protocol described in this study is useful for rapid detection of Clostridium perfringens toxin genes simultaneously in one‐step PCR.  相似文献   

5.
6.
7.
Meg9/Mirg (maternally expressed gene 9/microRNA containing gene), a non‐coding RNA (ncRNA) comprising many alternatively splicing isoforms, has been identified as maternally expressed in mouse and sheep, but its imprinting status and splicing variants are still unknown in cattle. In this study, we found three splicing variants of the cattle MEG9 gene expressed in a tissue‐specific manner. A single nucleotide polymorphism site (SNP c.1354C>G) was identified in exon 3 of cattle MEG9 and used to distinguish between monoallelic and biallelic expression. Our results showed that MEG9 exhibited monoallelic expression in all examined cattle tissues by comparing sequencing results between genomic DNA and cDNA levels at the c.1354C>G SNP site, suggesting that MEG9 is imprinted in cattle.  相似文献   

8.
9.
10.
11.
Comparison of the genomes of free‐living Bodo saltans and those of parasitic trypanosomatids reveals that the transition from a free‐living to a parasitic life style has resulted in the loss of approximately 50% of protein‐coding genes. Despite this dramatic reduction in genome size, B. saltans and trypanosomatids still share a significant number of common metabolic traits: glycosomes; a unique set of the pyrimidine biosynthetic pathway genes; an ATP‐PFK which is homologous to the bacterial PPi‐PFKs rather than to the canonical eukaryotic ATP‐PFKs; an alternative oxidase; three phosphoglycerate kinases and two GAPDH isoenzymes; a pyruvate kinase regulated by fructose‐2,6‐bisphosphate; trypanothione as a substitute for glutathione; synthesis of fatty acids via a unique set of elongase enzymes; and a mitochondrial acetate:succinate coenzyme A transferase. B. saltans has lost the capacity to synthesize ubiquinone. Among genes that are present in B. saltans and lost in all trypanosomatids are those involved in the degradation of mureine, tryptophan and lysine. Novel acquisitions of trypanosomatids are components of pentose sugar metabolism, pteridine reductase and bromodomain‐factor proteins. In addition, only the subfamily Leishmaniinae has acquired a gene for catalase and the capacity to convert diaminopimelic acid to lysine.  相似文献   

12.
13.
14.
White Galloway cattle exhibit three different white coat colour phenotypes, that is, well marked, strongly marked and mismarked. However, mating of individuals with the preferred well or strongly marked phenotype also results in offspring with the undesired mismarked and/or even fully black coat colour. To elucidate the genetic background of the coat colour variations in White Galloway cattle, we analysed four coat colour relevant genes: mast/stem cell growth factor receptor (KIT), KIT ligand (KITLG), melanocortin 1 receptor (MC1R) and tyrosinase (TYR). Here, we show that the coat colour variations in White Galloway cattle and White Park cattle are caused by a KIT gene (chromosome 6) duplication and aberrant insertion on chromosome 29 (Cs29) as recently described for colour‐sided Belgian Blue. Homozygous (Cs29/Cs29) White Galloway cattle and White Park cattle exhibit the mismarked phenotype, whereas heterozygous (Cs29/wt29) individuals are either well or strongly marked. In contrast, fully black individuals are characterised by the wild‐type chromosome 29. As known for other cattle breeds, mutations in the MC1R gene determine the red colouring. Our data suggest that the white coat colour variations in White Galloway cattle and White Park cattle are caused by a dose‐dependent effect based on the ploidy of aberrant insertions and inheritance of the KIT gene on chromosome 29.  相似文献   

15.
Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid‐expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.  相似文献   

16.
Sea‐strait geological history and seawater dispersal patterns can affect the genetic structure of coastal plants. We investigated microsatellite (simple sequence repeat, SSR) variations in chloroplast (cp) and nuclear (n) DNA of the coastal shrub R osa rugosa, native to northeastern Asia, and three species closely related to it. In northern Japan, we sampled R. rugosa along coasts around the Soya and Tsugaru straits with different histories of the Quaternary land formation as a result of different water depths. Both cpSSR and nSSR variations suggest rare hybridization between R . rugosa and the closely related species. Variations in one of two cpSSRs showed genetic differentiation between eastern and western Hokkaido. This genetic structure may result from introgression from R. davurica in eastern Hokkaido and/or isolation between the eastern and western coastlines of Hokkaido as a result of the Quaternary land formation in the Soya Strait. On the other hand, variations in 10 nSSRs were geographically homogeneous with weak isolation by distance along coastlines. These results suggest that extensive gene flow has been homogenizing the genetic structure of R . rugosa in northern Japan.  相似文献   

17.
18.
Hybridization among species of A conitum effects their morphology and ecology. In this study the hybridization between the diploid 2n(2x) = 16 ( A . lasiocarpum and A . variegatum) and tetraploid 2n(4x) = 32 ( A . firmum) species was documented in the Tatra Mountains (Western Carpathians) in a small, local population in a semi‐natural site. The hybrid species were: homoploid A . × pawlowskii ( A . lasiocarpum × A . variegatum), and triploid A . × berdaui ( A . firmum × A . variegatum, 2n(3x) = 24). Chloroplast DNA (cpDNA) alleles formed two distinct haplotypes, one typical for the tetraploid and another for diploid lines, shared between the tetraploid, triploid and diploid groups, indicating introgressive hybridization. The presumed gene flow was from the tetraploid to diploid species via the triploid bridge. The only two specimens of A . × pawlowskii that harbored tetraploid ( A . firmum) type cpDNA possessed bracteoles of A . firmum‐type. The remaining introgressed (cpDNA and Inter Simple Sequence Repeats (ISSR)) specimens ( A . variegatum) were morphologically pure, implying cryptic introgression. ISSR loci shared between the tetraploid A . firmum and diploid A . variegatum support the hypothesis of an ancient allopolyploid origin of A . firmum and the diploid species of A . variegatum‐type as one of its parent.  相似文献   

19.
The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology‐based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single‐cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3‐ and Pm8‐like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co‐evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.  相似文献   

20.
The role of resource availability in determining the incidence of masting has been widely studied, but how floral transition and initiation are regulated by the resource level is unclear. We tested the hypothesis that floral transition is stimulated by high resource availabiltiy in Fagus crenata based on a new technique, the expression analyses of flowering genes. We isolated F. crenata orthologues of FLOWERING LOCUS T, LEAFY and APETALA1, and confirmed their functions using transgenic Arabidopsis thaliana. We monitored the gene expression levels for 5 years and detected a cycle of on and off years, which was correlated with fluctuations of the shoot‐nitrogen concentration. Nitrogen fertilisation resulted in the significantly higher expression of flowering genes than the control, where all of the fertilised trees flowered, whereas the control did not. Our findings identified nitrogen as a key regulator of mast flowering, thereby providing new empirical evidence to support the resource budget model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号