首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Drebrin is a major F‐actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin‐binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+/calmodulin‐dependent protein kinase II (CaMKIIβ) as a drebrin‐binding protein using a yeast two‐hybrid system, and investigated the drebrin–CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin‐independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post‐synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin‐binding F‐actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.

  相似文献   


2.
3.
The serine/threonine kinase p21-activated kinase 1 (Pak1) modulates actin and microtubule dynamics. The neuronal functions of Pak1, despite its abundant expression in the brain, have not yet been fully delineated. Previously, we reported that Pak1 mediates initiation of dendrite formation. In the present study, the role of Pak1 in dendritogenesis, spine formation and maintenance was examined in detail. Overexpression of constitutively active-Pak1 in immature cortical neurons increased not only the number of the primary branching on apical dendrites but also the number of basal dendrites. In contrast, introduction of dominant negative-Pak caused a reduction in both of these morphological features. The length and the number of secondary apical branch points of dendrites were not significantly different in cultured neurons expressing these mutant forms, suggesting that Pak1 plays a role in dendritogenesis. Pak1 also plays a role in the formation and maintenance of spines, as evidenced by the altered spine morphology, resulting from overexpression of mutant forms of Pak1 in immature and mature hippocampal neurons. Thus, our results provide further evidence of the key role of Pak1 in the regulation of dendritogenesis, dendritic arborization, the spine formation, and maintenance.  相似文献   

4.
Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.  相似文献   

5.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


6.
The neuronal RNA‐binding protein HuD is involved in synaptic plasticity and learning and memory mechanisms. These effects are thought to be due to HuD‐mediated stabilization and translation of target mRNAs associated with plasticity. To investigate the potential role of HuD in drug addiction, we first used bioinformatics prediction algorithms together with microarray analyses to search for specific genes and functional networks upregulated within the forebrain of HuD overexpressing mice (HuDOE). When this set was further limited to genes in the knowledgebase of addiction‐related genes database (KARG) that contains predicted HuD‐binding sites in their 3′ untranslated regions (3′UTRs), we found that HuD regulates networks that have been associated with addiction‐like behavior. These genes included Bdnf and Camk2a, 2 previously validated HuD targets. Since addiction is hypothesized to be a disorder stemming from altered gene expression causing aberrant plasticity, we sought to test the role of HuD in cocaine conditioned placed preference (CPP), a model of addiction‐related behaviors. HuD mRNA and protein were upregulated by CPP within the nucleus accumbens of wild‐type C57BL/6J mice. These changes were associated with increased expression of Bdnf and Camk2a mRNA and protein. To test this further, we trained HuDOE and wild‐type mice in CPP and found that HuDOE mice showed increased cocaine CPP compared with controls. This was also associated with elevated expression of HuD target mRNAs and proteins, CaMKIIα and BDNF. These findings suggest HuD involvement in addiction‐related behaviors such as cocaine conditioning and seeking, through increased plasticity‐related gene expression.  相似文献   

7.
《Developmental neurobiology》2017,77(10):1161-1174
The formation and stabilization of new dendritic spines is a key component of the experience‐dependent neural circuit plasticity that supports learning, but the molecular maturation of nascent spines remains largely unexplored. The PSD95‐family of membrane‐associated guanylate kinases (PSD‐MAGUKs), most notably PSD95, has a demonstrated role in promoting spine stability. However, nascent spines contain low levels of PSD95, suggesting that other members of the PSD‐MAGUK family might act to stabilize nascent spines in the early stages of spiny synapse formation. Here, we used GFP‐fusion constructs to quantitatively define the molecular composition of new spines, focusing on the PSD‐MAGUK family. We found that PSD95 levels in new spines were as low as those previously associated with rapid subsequent spine elimination, and new spines did not achieve mature levels of PSD95 until between 12 and 20 h following new spine identification. Surprisingly, we found that the PSD‐MAGUKs PSD93, SAP97, and SAP102 were also substantially less enriched in new spines. However, they accumulated in new spines more quickly than PSD95: SAP102 enriched to mature levels within 3 h, SAP97 and PSD93 enriched gradually over the course of 6 h. Intriguingly, when we restricted our analysis to only those new spines that persisted, SAP97 was the only PSD‐MAGUK already present at mature levels in persistent new spines when first identified. Our findings uncover a key structural difference between nascent and mature spines, and suggest a mechanism for the stabilization of nascent spines through the sequential arrival of PSD‐MAGUKs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1161–1174, 2017  相似文献   

8.
9.
Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience‐dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277–286, 2016  相似文献   

10.
Previously, a single-stranded (ss) DNA element, polypyrimidine (PPy) element, was found to be important for the proximal promoter activity of mouse micro-opioid receptor (MOR) gene in a neuronal cell model. In this study, we identified the presence of unknown ssDNA binding proteins specifically bound to MOR ssPPy element in the mouse brain, implicating the physiological significance of these proteins. To identify the ssDNA binding proteins, yeast one-hybrid system with PPy element as the bait was used to screen a mouse brain cDNA library. The clone encoding poly C binding protein (PCBP) was obtained. Its full-length cDNA sequence and protein with molecular weight approximately 38 kDa were confirmed. Electrophoretic mobility shift analysis (EMSA) revealed that PCBP bound to ssPPy element, but not doubled-stranded, in a sequence-specific manner. EMSA with anti-PCBP antibody demonstrated the involvement of PCBP in MOR ssPPy/proteins complexes of mouse brain and MOR expressing neuroblastoma NMB cells. Functional analysis showed that PCBP trans-activated MOR promoter as well as a heterologous promoter containing MOR PPy element. Importantly, ectopic expression of PCBP in NMB cells up-regulated the expression level of endogenous MOR gene in vivo in a dose-dependent manner. Collectively, above results suggest that PCBP participates in neuronal MOR gene expression.  相似文献   

11.
Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen‐fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so‐called nodulin genes are induced, including large families that encode small peptides. Using a three‐hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA‐binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single‐stranded RNA‐binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA‐binding peptides.  相似文献   

12.
13.
Pheromone‐binding proteins (PBPs) play important roles in the information exchange between insect sexes, specifically in the process of transporting fat‐soluble odour molecules from the external environment to olfactory receptors through the olfactory sensillum lymph. The PBP functions in this process may explain the sex pheromone identification mechanism used by insects, laying a theoretical foundation for the prevention and control of pests by interfering with olfactory recognition. In the present study, a PBP gene of Cyrtotrachelus buqueti (GenBank accession number: KU845733) is cloned for prokaryotic expression. Using N‐phenyl‐1‐naphthylamine as the fluorescent probe in a competitive binding assay, the ability of CbuqPBP1 to bind 12 sex pheromone analogues and three volatiles of Neosinocalamus affinis shoots is examined. Of the 12 C. buqueti sex pheromone analogues, dibutyl phthalate gives the greatest displacement (inhibitory constant value of 11.1 μm ), whereas the other sex pheromone components show much smaller displacements. Consistent with other PBPs, the three plant volatiles (linalool, benzaldehyde and indole) show only a limited displacement of CbuqPBP1. However, the binding abilities of 1 : 1 ratios of each of the three plant volatiles with dibutyl phthalate show increases of 62.3%, 65.1% and 51.7% over the binding abilities of the three plant volatiles alone. CbuqPBP1 has dual roles in the processes of sensing sex pheromones and plant volatiles.  相似文献   

14.
Drebrin an actin‐bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild‐type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5‐hydroxytryptamine receptor 1A (5‐HT1AR), and 5‐hydroxytryptamine receptor 7 (5‐HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel‐based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory‐related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory‐related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  相似文献   


15.
16.
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins to form the RNA‐induced silencing complex (RISC), underpinning a powerful mechanism for fine‐tuning protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)‐dependent synaptic plasticity by modulating the translation of proteins involved in dendritic spine morphogenesis or synaptic transmission. However, it is unknown how NMDAR stimulation stimulates RISC activity to rapidly repress translation of synaptic proteins. We show that NMDAR stimulation transiently increases Akt‐dependent phosphorylation of Ago2 at S387, which causes an increase in binding to GW182 and a rapid increase in translational repression of LIMK1 via miR‐134. Furthermore, NMDAR‐dependent down‐regulation of endogenous LIMK1 translation in dendrites and dendritic spine shrinkage requires phospho‐regulation of Ago2 at S387. AMPAR trafficking and hippocampal LTD do not involve S387 phosphorylation, defining this mechanism as a specific pathway for structural plasticity. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA‐mediated translational repression to control dendritic spine morphology.  相似文献   

17.
18.
Understanding the evolutionary mechanisms of toxin accumulation in pufferfishes has been long‐standing problem in toxicology and evolutionary biology. Pufferfish saxitoxin and tetrodotoxin‐binding protein (PSTBP) is involved in the transport and accumulation of tetrodotoxin and is one of the most intriguing proteins related to the toxicity of pufferfishes. PSTBPs are fusion proteins consisting of two tandem repeated tributyltin‐binding protein type 2 (TBT‐bp2) domains. In this study, we examined the evolutionary dynamics of TBT‐bp2 and PSTBP genes to understand the evolution of toxin accumulation in pufferfishes. Database searches and/or PCR‐based cDNA cloning in nine pufferfish species (6 toxic and 3 nontoxic) revealed that all species possessed one or more TBT‐bp2 genes, but PSTBP genes were found only in 5 toxic species belonging to genus Takifugu. These toxic Takifugu species possessed two or three copies of PSTBP genes. Phylogenetic analysis of TBT‐bp2 and PSTBP genes suggested that PSTBPs evolved in the common ancestor of Takifugu species by repeated duplications and fusions of TBT‐bp2 genes. In addition, a detailed comparison of Takifugu TBT‐bp2 and PSTBP gene sequences detected a signature of positive selection under the pressure of gene conversion. The complicated evolutionary dynamics of TBT‐bp2 and PSTBP genes may reflect the diversity of toxicity in pufferfishes.  相似文献   

19.
Odorant‐binding proteins (OBPs) are believed to play an important role in olfactory recognition. In this study, expression pattern and fluorescence binding characteristics of MaltOBP13 from the Japanese pine sawyer beetle, Monochamus alternatus Hope, were investigated via qPCR analysis of MaltOBP13 mRNA level and binding assay of MaltOBP13 and ligands. qPCR monitoring indicated MaltOBP13 mainly expressed in newly emerged males, particularly highly expressed in the last abdominal segment of males, and the expression level was significantly higher in 13‐day‐old mated adults than those of other stages. To further understand the function of the MaltOBP13 protein in odorant reception, the binding affinity of recombinant MaltOBP13 to ligands was tested by fluorescence binding assays with N‐phenyl‐1‐naphthylamine as a fluorescent probe. The results of this assay indicated that MaltOBP13 exhibited a high binding affinity for pine volatiles and binding capacity was higher in acidic conditions than in neutral environment, indicating a possible role in finding host plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号