首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The peptidyl‐proyl isomerase Pin1 plays a key role in the regulation of phospho(p)‐Ser/Thr‐Pro proteins, acting as a molecular timer of the cell cycle. After recognition of these motifs, Pin1 catalyzes the rapid cis‐trans isomerization of proline amide bonds of substrates, contributing to maintain the equilibrium between the two conformations. Although a great interest has arisen on this enzyme, its catalytic mechanism has long been debated. Here, the cis‐trans isomerization of a model peptide system was investigated by means of umbrella sampling simulations in the Pin1‐bound and unbound states. We obtained free energy barriers consistent with experimental data, and identified several enzymatic features directly linked to the acceleration of the prolyl bond isomerization. In particular, an enhanced autocatalysis, the stabilization of perturbed ground state conformations, and the substrate binding in a procatalytic conformation were found as main contributions to explain the lowering of the isomerization free energy barrier. Proteins 2014; 82:2943–2956. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The main function of lysosomal proteins is to degrade cellular macromolecules. We purified a novel lysosomal protein to homogeneity from bovine kidneys. By gene annotation, this protein is defined as a bovine phospholipase B‐like protein 1 (bPLBD1) and, to better understand its biological function, we solved its structure at 1.9 Å resolution. We showed that bPLBD1 has uniform noncomplex‐type N‐glycosylation and that it localized to the lysosome. The first step in lysosomal protein transport, the initiation of mannose‐6‐phosphorylation by a N‐acetylglucosamine‐1‐phosphotransferase, requires recognition of at least two distinct lysines on the protein surface. We identified candidate lysines by analyzing the structural and sequentially conserved N‐glycosylation sites and lysines in bPLBD1 and in the homologous mouse PLBD2. Our model suggests that N408 is the primarily phosphorylated glycan, and K358 a key residue for N‐acetylglucosamine‐1‐phosphotransferase recognition. Two other lysines, K334 and K342, provide the required second site for N‐acetylglucosamine‐1‐phosphotransferase recognition. bPLBD1 is an N‐terminal nucleophile (Ntn) hydrolase. By comparison with other Ntn‐hydrolases, we conclude that the acyl moiety of PLBD1 substrate must be small to fit the putative binding pocket, whereas the space for the rest of the substrate is a large open cleft. Finally, as all the known substrates of Ntn‐hydrolases have amide bonds, we suggest that bPLBD1 may be an amidase or peptidase instead of lipase, explaining the difficulty in finding a good substrate for any members of the PLBD family. Proteins 2014; 82:300–311. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Thioamides, single atom oxygen‐to‐sulfur substitutions of canonical amide bonds, can be valuable probes for protein folding and protease studies. Here, we investigate the fluorescence quenching properties of thioamides incorporated into the side‐chains of amino acids. We synthesize and incorporate Fmoc‐protected, solid‐phase peptide synthesis building blocks for introducing Nε‐thioacetyl‐lysine and γ‐thioasparagine. Using rigid model peptides, we demonstrate the distance‐dependent fluorescence quenching of these thioamides. Furthermore, we describe attempts to incorporate of Nε‐thioacetyl‐lysine into proteins expressed in Escherichia coli using amber codon suppression.  相似文献   

4.
Murein hydrolases cleave bonds in the bacterial exoskeleton, the murein (peptidoglycan) sacculus, a covalently closed bag-shaped polymer made of glycan strands that are crosslinked by peptides. During growth and division of a bacterial cell, these enzymes are involved in the controlled metabolism of the murein sacculus. Murein hydrolases are believed to function as pacemaker enzymes for the enlargement of the murein sacculus since opening of bonds in the murein net is needed to allow the insertion of new subunits into the sacculus. Furthermore, they are responsible for splitting the septum during cell division. The murein turnover products that are released during growth are further degraded by these hydrolases to products that can be recycled by the biosynthetic enzymes. As potentially suicidal (autolytic) enzymes, murein hydrolases must be strictly controlled by the cell, Inhibition of murein synthesis, for example by penicillin, triggers an unbalanced action of murein hydrolases causing bacteriolysis. InEscherichia coli, 14 different murein hydrolases have so far been identified, includingN-acetylmuramyl-l-alanine amidases,dd-endopeptidases,dd-carboxypeptidases,ld-carboxypeptidases, andN-acetylglucosaminidases. In addition lysozyme-like enzymes, called “lytic transglycosylases,” produce (1→6)-anhydromuramic acid derivatives by an intramolecular transglycosylation reaction.  相似文献   

5.
Enantiopure 3((R)‐ and 3((S)‐1‐phenylethyl)‐4‐oxazoline‐2‐ones were evaluated as chiral building blocks for the divergent construction of heterocycles with stereogenic quaternary centers. The N‐(R)‐ or N‐(S)‐1‐phenylethyl group of these compounds proved to be an efficient chiral auxiliary for the asymmetric induction of the 4‐ and 5‐positions of the 4‐oxazolin‐2‐one ring through thermal and MW‐promoted nucleophilic conjugated addition to Michael acceptors and alkyl halides. The resulting adducts were transformed via a cascade process into fused six‐membered carbo‐ and heterocycles. The structure of the reaction products depended on the electrophiles and reaction conditions used. Alternative isomeric 4‐methylene‐2‐oxazolidinones served as chiral precursors for a versatile and divergent approach to highly substituted cyclic carbamates. DFT quantum calculations showed that the formation of bicyclic pyranyl compounds was generated by a diastereoselective concerted hetero‐Diels‐Alder cycloaddition.  相似文献   

6.
Two new rigid bi‐aromatic linkers for synthesis of peptide arrays by SPOT methodology were obtained from cellulose treated with 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine. Reaction with m‐phenylenediamine gave non‐cleavable TYPE I linker which enabled attachment of the peptides via resistant to harsh reaction conditions amide, ether, and amine bonds. Reaction with 3‐Fmoc‐aminobenzoic acid followed by thermal isomerization of the intermediate “superactive” ester producing an amide‐like bond gave TYPE II linker that was very stable during peptide synthesis. However, the peptide was cleavable, with fragment of the linker, in the presence of 1 M LiOH solution. The uniform loading of the cellulose and efficient synthesis of the peptide array was achieved by using N‐(4,6‐dimethoxy‐1,3,5‐triazin‐1‐yl)‐N‐methylmorpholinium 4‐toluenesulfonate as the coupling reagent.  相似文献   

7.
Structural modification of the peptide backbone via N‐methylation is a powerful tool to modulate the pharmacokinetic profile and biological activity of peptides. Here we describe a rapid and highly efficient microwave(MW)‐assisted Fmoc/tBu solid‐phase method to prepare short chain N‐methyl‐rich peptides, using Rink amide p‐methylbenzhydrylamine (MBHA) resin as solid‐phase support. This method produces peptides in high yield and purity, and reduces the time required for Fmoc‐N‐methyl amino acid coupling. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Glyceroacetonide–Oxyma [(2,2‐dimethyl‐1,3‐dioxolan‐4‐yl)methyl 2‐cyano‐2‐(hydroxyimino)acetate ( 1 )] displayed remarkable physico‐chemical properties as an additive for peptide‐forming reactions. Although racemization‐free amide‐forming reactions have been established for N‐urethane‐protected α‐amino acids with EDCI, 1 , and NaHCO3 in water or DMF‐water media, amide‐forming reactions of N‐acyl‐protected α‐amino acids and segment couplings of oligopeptides still require further development. Diethylphosphoryl–glyceroacetonide–oxyma (DPGOx 3 ) exhibits relative stability in aprotic solvents and is an effective coupling reagent for N‐acyl‐protected α‐amino acids and oligo peptide segments. The conditions reported here is also effective in lactam‐forming reactions. Unlike most of the reported coupling reagents, simple aqueous work‐up procedures can remove the reagents and by‐products generated in the reactions. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders. This review briefly summarizes recent progress in understanding the biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The development and application of specific inhibitors for an individual serine hydrolase, if available, are also described.This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

10.
The twin‐arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat‐exported protein and determined the virulence phenotype of mutant strains. Although a tat mutant is highly attenuated, no single Tat‐exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N‐acetylmuramoyl‐l ‐alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments.  相似文献   

11.
Glutamic acid–rich peptides are crucial to a variety of biological processes, including glutamatergic neurotransmission and immunological defense. Glutamic acid sequences often exhibit unusual organization into β2‐type sheets, where bifurcated H bonds formed between glutamic acid side chains and NH in amide bonds on adjacent βstrands play a paramount role for stabilizing the molecular assembly. Herein, we investigate the self‐assembly and supramolecular structure of simplified models consisting of alternating glutamic acid/phenylalanine residues. Small‐angle X‐ray scattering and atomic force microscopy show that the aggregation pathway is characterized by the formation of small oligomers, followed by coalescence into nanofibrils and nanotapes. Amyloidogenic features are further demonstrated through fiber X‐ray diffraction, which reveal molecular packing according to cross‐β patterns, where βstrands appear perpendicularly oriented to the long axis of nanofibrils and nanotapes. Nanoscale infrared spectroscopy from individual nanoparticles on dried samples shows a remarkable decrease of β2‐sheet content, accompanied by growth of standard β‐sheet fractions, indicating a β2‐to‐β1 transition as a consequence of the release of solvent from the interstices of peptide assemblies. Our findings highlight the key role played by water molecules in mediating H‐bond formation in β2‐sheets commonly found in amyloidogenic glutamic acid–rich aggregates.  相似文献   

12.
Staphylococcus epidermidis causes nosocomial infections by colonizing and forming biofilms on indwelling medical devices. This process involves specific interactions between cell wall‐anchored (CWA) proteins and host proteins adsorbed onto the biomaterial. Here, we have explored the molecular forces by which the S. epidermidis CWA protein serine‐aspartate repeat protein F (SdrF) binds to type I collagen, by means of advanced atomic force microscopy (AFM) techniques. Using single‐cell force spectroscopy, we found that SdrF mediates bacterial adhesion to collagen‐coated substrates through both weak and strong bonds. Single‐molecule force spectroscopy demonstrated that these bonds involve the A and B regions of SdrF, thus revealing that the protein is capable of dual ligand‐binding activity. Both weak and strong bonds showed high dissociation rates, indicating they are much less stable than those formed by the well‐characterized ‘dock, lock and latch’ mechanism. Collectively, our results show that CWA proteins can bind to ligands by novel mechanisms. We anticipate that AFM will greatly contribute to the identification of novel binding partners and binding mechanisms in staphylococcal CWA proteins.  相似文献   

13.
NagZ is an exo‐N‐acetyl‐β‐glucosaminidase, found within Gram‐negative bacteria, that acts in the peptidoglycan recycling pathway to cleave N‐acetylglucosamine residues off peptidoglycan fragments. This activity is required for resistance to cephalosporins mediated by inducible AmpC β‐lactamase. NagZ uses a catalytic mechanism involving a covalent glycosyl enzyme intermediate, unlike that of the human exo‐N‐acetyl‐β‐glucosaminidases: O‐GlcNAcase and the β‐hexosaminidase isoenzymes. These latter enzymes, which remove GlcNAc from glycoconjugates, use a neighboring‐group catalytic mechanism that proceeds through an oxazoline intermediate. Exploiting these mechanistic differences we previously developed 2‐N‐acyl derivatives of O‐(2‐acetamido‐2‐deoxy‐D ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), which selectively inhibits NagZ over the functionally related human enzymes and attenuate antibiotic resistance in Gram‐negatives that harbor inducible AmpC. To understand the structural basis for the selectivity of these inhibitors for NagZ, we have determined its crystallographic structure in complex with N‐valeryl‐PUGNAc, the most selective known inhibitor of NagZ over both the human β‐hexosaminidases and O‐GlcNAcase. The selectivity stems from the five‐carbon acyl chain of N‐valeryl‐PUGNAc, which we found ordered within the enzyme active site. In contrast, a structure determination of a human O‐GlcNAcase homologue bound to a related inhibitor N‐butyryl‐PUGNAc, which bears a four‐carbon chain and is selective for both NagZ and O‐GlcNAcase over the human β‐hexosamnidases, reveals that this inhibitor induces several conformational changes in the active site of this O‐GlcNAcase homologue. A comparison of these complexes, and with the human β‐hexosaminidases, reveals how selectivity for NagZ can be engineered by altering the 2‐N‐acyl substituent of PUGNAc to develop inhibitors that repress AmpC mediated β‐lactam resistance.  相似文献   

14.
The occurrence of genes encoding biotechnologically relevant α/β‐hydrolases in mangrove soil microbial communities was assessed using data obtained by whole‐metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β‐hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ~ 23%), microsomal hydrolases (abH09; ~ 12%) and Moraxella lipase‐like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01‐02‐03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus‐Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already‐described genes opens perspectives for both production in an expression host and genetic screening of metagenomes.  相似文献   

15.
Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate‐producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch‐degrading α‐amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ~40‐fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.  相似文献   

16.
Mortality from tobacco smoking remains the leading cause of preventable death in the world, yet current cessation therapies are only modestly successful, suggesting new molecular targets are needed. Genetic analysis of gene expression and behavior identified Chrna7 as potentially modulating nicotine place conditioning in the BXD panel of inbred mice. We used gene targeting and pharmacological tools to confirm the role of Chrna7 in nicotine conditioned place preference (CPP). To identify molecular events downstream of Chrna7 that may modulate nicotine preference, we performed microarray analysis of α7 knock‐out (KO) and wild‐type (WT) nucleus accumbens (NAc) tissue, followed by confirmation with quantitative polymerase chain reaction (PCR) and immunoblotting. In the BXD panel, we found a putative cis expression quantitative trait loci (eQTL) for Chrna7 in NAc that correlated inversely to nicotine CPP. We observed that gain‐of‐function α7 mice did not display nicotine preference at any dose tested, whereas conversely, α7 KO mice demonstrated nicotine place preference at a dose below that routinely required to produce preference. In B6 mice, the α7 nicotinic acetylcholine receptor (nAChR)‐selective agonist, PHA‐543613, dose‐dependently blocked nicotine CPP, which was restored using the α7 nAChR‐selective antagonist, methyllycaconitine citrate (MLA). Our genomic studies implicated a messenger RNA (mRNA) co‐expression network regulated by Chrna7 in NAc. Mice lacking Chrna7 demonstrate increased insulin signaling in the NAc, which may modulate nicotine place preference. Our studies provide novel targets for future work on development of more effective therapeutic approaches to counteract the rewarding properties of nicotine for smoking cessation .  相似文献   

17.
The reversible acetylation of lysine to form N6‐acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N‐alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein–protein interactions. We now report the analysis of 381 N6‐acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6‐acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6‐acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6‐acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cistrans isomerization. In contrast, 109 unique N‐alkylacetamide groups contained in 84 highly accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6‐acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The present study reports the convenient synthesis, spectroscopic characterization, bio‐assays and computational evaluation of a novel series of N‐acyl‐1H‐imidazole‐1‐carbothioamides. The screened derivatives displayed excellent antioxidant activity, moderate antibacterial and antifungal potential. The screened derivatives were found to be highly biocompatible against hRBCs. Molecular docking ascertained the mechanism and mode of action towards the molecular target delineating that ligands and complexes were stabilized at the active site by electrostatic and hydrophobic forces in accordance to the corresponding experimental results. Docking simulation provided additional information about the possibilities of inhibitory potential of the compounds against RNA. Computational evaluation predicted that N‐acyl‐1H‐imidazole‐1‐carbothioamides 5c and 5g can serve as potential surrogates for hit to lead generation and design of novel antioxidant and antibacterial agents.  相似文献   

19.
The novel N‐propylphthalimide‐substituted and 4‐vinylbenzyl‐substituted N‐heterocyclic carbene (NHC) precursors were synthesized by N‐substituted benzimidazolium with aryl halides. The novel N‐propylphthalimide‐substituted and 4‐vinylbenzyl‐substituted NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy, and elemental analysis techniques. They were tested for the inhibition of AChE and hCA enzymes and demonstrated efficient inhibition profiles with Ki values in the range of 351.0–1269.9 nM against hCA I, 346.6–1193.1 nM against hCA II, and 19.0–76.3 nM against AChE. On the other hand, acetazolamide, a clinically used molecule, utilized as CA inhibitor, obtained a Ki value of 1246.7 nM against hCA I and 1407.6 nM against hCA II. Additionally, tacrine inhibited AChE and obtained a Ki value of 174.6 nM.  相似文献   

20.
A new set of ligands based on substituted pyridine and other N‐heterocyclic structures, possessing an aliphatic primary amino group tether and an exocyclic sulphur atom, has been prepared and immobilized onto epoxy‐activated matrices such as Sepharose 6 Fast Flow®. The derived adsorbents have been evaluated for their utility to capture and purify humanized monoclonal antibodies. Favourable binding properties were assessed from screening assays to determine optimal conditions for the capture and elution of the monoclonal antibodies. Static and dynamic binding experiments were employed to derive the equilibrium dissociation constants KD's and binding capacities Qmax's. Typically, the KD values were in the range of 2–5 μM and the Qmax values between 20 and 75 mg mAb/ml resin, depending on the stereo‐electronic properties of the substituent in the N‐heterocyclic ring structure. The effect of ligand structure on the selectivity of these adsorbents was also investigated, and criteria for their use in the purification of monoclonal antibodies from cell culture supernatants established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号