首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The diversity of Alexandrium spp. in Irish coastal waters was investigated through the morphological examination of resting cysts and vegetative cells, the determination of PSP toxin and spirolide profiles and the sequence analysis of rDNA genes. Six morphospecies were characterised: A. tamarense, A. minutum, A. ostenfeldii, A. peruvianum, A. tamutum and A. andersoni. Both PSP toxin producing and non-toxic strains of A. tamarense and A. minutum were observed. The average toxicities of toxic strains for both cultured species were respectively 11.3 (8.6 S.D.) and 2.3 (0.5 S.D.) pg STX equiv. cell−1. Alexandrium ostenfeldii and A. peruvianum did not synthesise PSP toxins but HPLC–MS analysis of two strains showed distinct spirolide profiles. A cyst-derived culture of A. peruvianum from Lough Swilly mainly produced spirolides 13 desmethyl-C and 13 desmethyl-D whereas one of A. ostenfeldii, from Bantry Bay, produced spirolides C and D. Species identification was confirmed through the analyses of SSU, ITS1-5.8S-ITS2 and LSU rDNA genes. Some nucleotide variability was observed among clones of toxic strains of A. tamarense, which all clustered within the North American clade. However, rDNA sequencing did not allow discrimination between the toxic and non-toxic forms of A. minutum. Phylogenetic analysis also permitted the differentiation of A. ostenfeldii from A. peruvianum. Resting cysts of PSP toxin producing Alexandrium species were found in Cork Harbour and Belfast Lough, locations where shellfish contamination events have occurred in the past, highlighting the potential for the initiation of harmful blooms from cyst beds. The finding of supposedly non-toxic and biotoxin-producing Alexandrium species near aquaculture production sites will necessitate the use of reliable discriminative methods in phytoplankton monitoring.  相似文献   

2.
Routine sampling of the water quality stations in the New River Estuary (Jacksonville, North Carolina, USA) during November 2004 revealed the presence of a previously unidentified dinoflagellate. Preliminary observations of its morphology suggested it to be consistent with that of Alexandrium peruvianum (Balech et Mendiola) Balech et Tangen. Observations using brightfield, epifluorescence and scanning electron microscopy confirmed the diagnostic thecal plates to be those of A. peruvanium. Clonal cultures established from cells isolated from the New River Estuary samples were also used for further studies of morphology and for the presence of toxins. Thecal morphology was consistent with that described by Balech clearly separating it from the sister species Alexandrium ostenfeldii. Three classes of toxins were detected from these cultures. An erythrocyte lysis assay (ELA) was used to confirm the presence of hemolytic toxins in A. peruvianum cultures. A cellular EC50 for lysis was 1.418 × 104 cells, well within the range the maximal cells densities found in the New River and more potent when compared on a cellular basis with Prymnesium parvum. Another toxin class detected in A. peruvianum cultures was the fast acting 13-desmethy C and D spirolides also produced by the sister species A. ostenfeldii. The last toxin type detected in the A. peruvianum cultures was the paralytic shellfish toxins, GTX 2, 3, B1, STX and C1,2. These findings expand the geographic range of occurrence for A. peruvianum in the U.S. to be much greater than previously considered. The morphological characters agreed with previously reported molecular data in separating A. peruvianum from A. ostenfeldii. It is also the first confirmed report that this species produces PSP toxins, spirolides and naturally occurring hemolytic substances. In light of these findings additional attention is needed for the detection of Alexandrium species in all coastal waters of the U.S. This added effort will enhance the evaluation of the relative impacts of the species to shellfish safety and bloom surveillance.  相似文献   

3.
4.
The toxic marine dinoflagellates Alexandrium tamarense (Lebor) Balech and A. catenella (Whedon and Kofoid) Taylor have been mainly responsible for paralytic shellfish poisoning in Japan. Rapid and precise identification of these algae has been difficult because this genus contains many morphologically similar toxic and nontoxic species. Here, we report a rapid, precise, and quantitative identification method using three fluorescent, rRNA‐targeted, oligonucleotide probes for A. tamarense (Atm1), A. catenella (Act1), and the nontoxic A. affine (Inoue et Fukuyo; Aaf1). Each probe was species specific when applied using fluorescence in situ hybridization (FISH). None of the probes reacted with three other Alexandrium spp., A. lusitanicum Balech, A. ostenfeldii (Paulsen) Balech & Tangen, and A. insuetum Balech, or with eight other microalgae, including Gymnodinium mikimotoi Miyake et Kominami ex Oda and Heterosigma akashiwo (Hada) Hara et Chihara, suggesting that the species specificity of each probe was very high. Cells labeled with fluorescein 5‐isothiocyanate–conjugated probes showed strong green fluorescence throughout the whole cell except for the nucleus. FISH could be completed within 1 h and largely eliminated the need for identifying species based on key morphological criteria. More than 80% of targeted cells of both species could be identified by microscopy and quantified during growth up to the early stationary phase; more than 70% of cells could be detected in the late stationary phase. The established FISH protocol was found to be a specific, rapid, precise, and quantitative method that might prove to be a useful tool to distinguish and quantify Alexandrium cells collected from Japanese coastal waters.  相似文献   

5.
The composition of paralytic shellfish toxins in the marine dinoflagellate Alexandrium ostenfeldii (Paulsen) Balech et Tangen grown in unialgal culture was determined by high-performance liquid chromatography. The toxin profile revealed that the low-potency sulfamate toxin B2 was dominant (90 molar % of total toxins), but small amounts of the weakly toxic 21-N-sulfocarbamoyl derivatives C1+2 and trace amounts of the carbamate toxins GTX2 and GTX3 were also present. The mammalian toxicity was confirmed by a modification of the conventional AOAC mouse bioassay (0.6–1.4 pg STXeq· cell-1). The acute toxicity to a potential predator, the tintinnid ciliate Favella ehrenbergi (Clap, et Lach.) Jörg., was also investigated. The ciliate was able to graze on A. ostenfeldii when the cell concentration of the dinoflagellate was low (<2000 cells · mL-1). At higher concentrations the ciliate was affected by exudates (presumably PSP toxins) that induced backward swimming followed by swelling and lysis of the cell. Fluorescence microscopy of calcofluor-stained cells was employed as an easy and rapid method to identify this and other thecate dinoflagellates.  相似文献   

6.
7.
Alexandrium catenella (Whedon et Kof.) Balech, A. tamarense (M. Lebour) Balech, and A. fundyense Balech comprise the A. tamarense complex, dinoflagellates responsible for paralytic shellfish poisoning worldwide. The relationships among these morphologically defined species are poorly understood, as are the reasons for increases in range and bloom occurrence observed over several decades. This study combines existing data with new ribosomal DNA sequences from strains originating from the six temperate continents to reconstruct the biogeography of the complex and explore the origins of new populations. The morphospecies are examined under the criteria of phylogenetic, biological, and morphological species concepts and do not to satisfy the requirements of any definition. It is recommended that use of the morphospecies appellations within this complex be discontinued as they imply erroneous relationships among morphological variants. Instead, five groups (probably cryptic species) are identified within the complex that are supported on the basis of large genetic distances, 100% bootstrap values, toxicity, and mating compatibility. Every isolate of three of the groups that has been tested is nontoxic, whereas every isolate of the remaining two groups is toxic. These phylogenetic groups were previously identified within the A. tamarense complex and given geographic designations that reflected the origins of known isolates. For at least two groups, the geographically based names are not indicative of the range occupied by members of each group. Therefore, we recommend a simple group‐numbering scheme for use until the taxonomy of this group is reevaluated and new species are proposed.  相似文献   

8.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

9.
An electron microscopic examination of large amorphous inclusions located in a variety of photosynthetic thecate dinoflagellates (Alexandrium ostenfeldii (Paulsen) Balech et Tangen, Gonyaulax diegensis Kofoid, Scrippsiella sp., Ceratium longipes (Bailey) Gran, and Prorocentrum micans Ehrenberg) and a nonphotosynthetic thecate species (Amylax sp.) revealed each inclusion to be a food vacuole, the majority of which were ingested ciliate prey. Recognizable features of these ciliates included linear arrays of basal bodies and cilia consistent with oligotrich polykinetid structure, characteristic macronuclei, chloroplasts (evidently kleptoplastids), cup-shaped starch plates, and cylindrical extrusomes. Three species contained (apparent) nonciliate prey: Scrippsiella sp., whose food vacuoles consistently contained unusual and complex extrusome-like cylindrical bodies having a distinctive six-lobed, multilayered structure; P. micans, which contained an unidentified encysted cell; and a single A. ostenfeldii cell, containing a Dinophysis sp. dinoflagellate cell. Several food vacuoles of ciliate origin had a red hue. This, together with the resemblance of A. ostenfeldii cells to planozygotes, suggests that similar structures previously identified as accumulation bodies may in fact be food vacuoles and that feeding may in some cases be associated with sexual processes.  相似文献   

10.
Phytoplankton monitoring in Wickford Cove, Rhode Island, US (41°34′10.13″N, 71°26′45.76″W), located in Narragansett Bay, detected an unusual species of Alexandrium in the spring of 2009. Thecal plate analysis using brightfield and SEM microscopy revealed a plate morphology consistent with that of Alexandrium peruvianum (Balech and de Mendiola) Balech and Tangen. Molecular analyses indicated that the sequences of the SSU, ITS1, 5.8S, ITS2 and LSU through the D region of the 18S gene were similar to those of A. peruvianum from North Carolina. Toxin analyses of cells brought into culture revealed saxitoxins, gymnodimine and fast-acting spiroimines were present in the cultured clone. Saxitoxins detected included GTX 2, GTX3, B1, STX, C1 and C2. Also present in the Wickford cove isolates of A. peruvianum were 12-methyl gymnodimine and 13-desmethyl spirolide C. A. peruvianum was detected at four sites in lower Narragansett Bay: at two sites in Wickford and two sites in Jamestown, RI. A. peruvianum was observed in the spring of 2009, 2010, 2011 and 2012 at maximum abundance levels ranging from tens of cells per liter to 14,000 cells L−1. The discovery of A. peruvianum in Rhode Island coastal waters, with its potential threat to public health, is notable as it appears to be an emergent bloom species globally. The presence of A. peruvianum in Narragansett Bay is the third confirmed observation of this species on the Atlantic coast of North America. Monitoring efforts in the southern New England region should incorporate measures to detect the presence of A. peruvianum toxins.  相似文献   

11.
The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub‐Unit (SSU) rDNA, partial Large Sub‐Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1‐5.8S‐ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU‐ITS‐LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida‐Cuba, (C1) India, and (C2) Australia.  相似文献   

12.
Benthic Prorocentrum species can produce toxins that adversely affect animals and human health. They are known to co‐occur with other bloom‐forming, potentially toxic, benthic dinoflagellates of the genera Ostreopsis, Coolia, and Gambierdiscus. In this study, we report on the presence of P. elegans M.Faust and P. levis M.A.Faust, Kibler, Vandersea, P.A. Tester & Litaker from the southeastern Bay of Biscay. Sampling was carried out in the Summer‐Autumn 2010–2012 along the Atlantic coast of the Iberian Peninsula, but these two species were only found in the northeastern part of the Peninsula. Strains were isolated from macroalgae collected from rocky‐shore areas bordering accessible beaches. Morphological traits of isolated strains were analyzed by LM and SEM, whereas molecular analyses were performed using the LSU and internal transcribed spacer (ITS)1‐5.8S‐ITS2 regions of the rDNA. A bioassay with Artemia fransciscana and liquid chromatography–high‐resolution mass spectrometry analyses were used to check the toxicity of the species, whose results were negative. The strains mostly corresponded to their species original morphological characterization, which is supported by the phylogenetic analyses in the case of P. levis, whereas for P. elegans, this is the first known molecular characterization. This is also the second known report of P. elegans.  相似文献   

13.
14.
The Asian flea beetles Altica cirsicola, Altica fragariae and Altica viridicyanea are broadly sympatric and morphologically highly similar but feed on distantly related host plants. They have been suggested as a model for ecological speciation studies. However, their phylogeny and species limits remain uncertain. In this study, we added mitochondrial genomes from multiple individuals of each species to the growing database. Phylogenetic analyses based on 15 genes showed clear interspecific divergences of A. fragariae from the other species, but A. cirsicola and A. viridicyanea were not distinguishable by distance‐based or tree‐based methods of species delimitation due to non‐monophyly of mitogenomes relative to the morphologically defined entities, possibly affected by interspecific introgression. This was confirmed by wider sampling of mitochondrial COX1 (58 individuals) and the second internal transcribed spacer of nuclear ribosomal RNA cluster (ITS2; 68 individuals), which showed that ITS2, but not COX1, coincided with the morphological species limits. The full mitochondrial genomes are not able to shed further light on the species status, even with the most sensitive approach based on diagnostic characters, yet the whole mitogenome is useful to get improved estimates of intra‐ and interspecific variation, not affected by the stochastic error seen in individual genes.  相似文献   

15.
Alexandrium minutum is a globally distributed harmful algal bloom species with many strains that are known to produce paralytic shellfish toxins (PSTs) and consequently represent a concern to human and ecosystem health. This review highlights that A. minutum typically occurs in sheltered locations, with cell growth occurring during periods of stable water conditions. Sediment characteristics are important in the persistence of this species within a location, with fine sediments providing cyst deposits for ongoing inoculation to the water column. Toxic strains of A. minutum do not produce a consistent toxin profile, different populations produce a range of PSTs in differing quantities. Novel cluster analysis of published A. minutum toxin profiles indicates five PST profile clusters globally. Some clusters are grouped geographically (Northern Europe) while others are widely spread. Isolates from Taiwan have a range of toxin profile clusters and this area appears to have the most diverse set of PST producing A. minutum populations. These toxin profiles indicate that within the United Kingdom there are two populations of A. minutum grouping with strains from Northern France and Southern Ireland. There is a degree of interconnectivity in this region due to oceanic circulation and a high level of shipping and recreational boating. Further research into the interrelationships between the A. minutum populations in this global region would be of value.  相似文献   

16.
17.
18.
Wittrockiella is a small genus of filamentous green algae that occurs in habitats with reduced or fluctuating salinities. Many aspects of the basic biology of these algae are still unknown and the phylogenetic relationships within the genus have not been fully explored. We provide a phylogeny based on three ribosomal markers (ITS, LSU, and SSU rDNA) of the genus, including broad intraspecific sampling for W. lyallii and W. salina, recommendations for the use of existing names are made, and highlight aspects of their physiology and life cycle. Molecular data indicate that there are five species of Wittrockiella. Two new species, W. australis and W. zosterae, are described, both are endophytes. Although W. lyallii and W. salina can be identified morphologically, there are no diagnostic morphological characters to distinguish between W. amphibia, W. australis, and W. zosterae. A range of low molecular weight carbohydrates were analyzed but proved to not be taxonomically informative. The distribution range of W. salina is extended to the Northern Hemisphere as this species has been found in brackish lakes in Japan. Furthermore, it is shown that there are no grounds to recognize W. salina var. kraftii, which was described as an endemic variety from a freshwater habitat on Lord Howe Island, Australia. Culture experiments indicate that W. australis has a preference for growth in lower salinities over full seawater. For W. amphibia and W. zosterae, sexual reproduction is documented, and the split of these species is possibly attributable to polyploidization.  相似文献   

19.
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross‐section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re‐analysis of published and newly generated plastid atpB‐rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).  相似文献   

20.
During September 2010, Abutilon megapotamicum plants with dark‐brown concentric spots on leaves were observed in a commercial glasshouse located in Beijing, China. This study was carried out to identify the causal agent of this disease based on Koch's postulates and morphological characteristics. Pathogenicity tests in the glasshouse showed that Myrothecium roridum Tode ex Fr. caused the leaf spot on A. megapotamicum plants, which were the same as those observed in naturally infected plants in the field. Moreover, to confirm the pathogen to species, the rDNA internal transcribed spacer (ITS) of isolate was PCR‐amplified using ITS1 and ITS4 primer pairs and sequenced. DNA analysis revealed a 100% species identity index for M. roridum. To the best of our knowledge, this is the first report of M. roridum on A. megapotamicum in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号