首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships within the brown algal order Sphacelariales and with its sister group were investigated using chloroplast-encoded psbC and rbcL DNA sequences. A pilot study with 21 non-sphacelarialeans, representing nine orders (and some incertae sedis taxa), showed a strongly supported monophyly of the Sphacelariales with its sister taxa Phaeostrophion irregulare, Bodanella lauterborni and Heribaudiella fluviatilis. These three taxa were selected as outgroup for further analyses including DNA sequences of 30 sphacelarialean specimens representing all but two of the recognized genera (Phloiocaulon and Ptilopogon were not sampled). Bayesian Inference and Maximum Likelihood trees showed some incongruence with Maximum Parsimony trees. Trees based on rbcL showed some incongruence with trees based on psbC and combined alignments. Phylogenetic results were used as the basis for a newly proposed classification of the Sphacelariales that reflects evolutionary history. The Sphacelariales is subdivided into four families: Cladostephaceae (monotypic), Sphacelariaceae, Stypocaulaceae, and a newly created monotypic family Sphacelodermaceae to incorporate Sphaceloderma caespitula, comb. nov. (former Sphacelaria caespitula). Sphacelaria radicans is transferred to a newly created genus Protohalopteris and classified in the Stypocaulaceae, which also contains the two unsampled genera Phloiocaulon and Ptilopogon as well as the genus Halopteris. The genera Stypocaulon and monotypic Alethocladus were merged with Halopteris. The Sphacelariaceae were subdivided into six genera including Sphacelaria (consisting only of the former subgenus Propagulifera) and the monotypic Sphacella. Herpodiscus durvillaeae, Sphacelaria pulvinata and the Sphacelaria subgenera Bracteata and Reinkea were merged in an emended Herpodiscus. A new genus Sphacelorbus was created for Sphacelaria nana. Battersia was reinstated for Sphacelaria mirabilis and the subgenus Pseudochaetopteris, except for Sphacelaria plumosa for which Chaetopteris was reinstated.  相似文献   

2.
3.
The marine red algal family Liagoraceae sensu lato is shown to be polyphyletic based on analyses of a combined rbcL and psaA data set and the pattern of carposporophyte development. Fifteen of eighteen genera analyzed formed a monophyletic lineage that included the genus Liagora. Nemalion did not cluster with Liagoraceae sensu stricto, and Nemaliaceae is reinstated, characterized morphologically by the formation of the primary gonimolobes by longitudinal divisions of the gonimoblast initial. Yamadaella and Liagoropsis, previously placed in the Dermonemataceae, are shown to be independent lineages and are recognized as two new families Yamadaellaceae and Liagoropsidaceae. Yamadaellaceae is characterized by two gonimoblast initials cut off bilaterally from the fertilized carpogonium and diffusely spreading gonimoblast filaments. Liagoropsidaceae is characterized by at least three gonimoblast initials cut off by longitudinal septa from the fertilized carpogonium. In contrast, Liagoraceae sensu stricto is characterized by a single gonimoblast initial cut off transversely or diagonally from the fertilized carpogonium. Reproductive features, such as diffuse gonimoblasts and unfused carpogonial branches following postfertilization, appear to have evolved on more than one occasion in the Nemaliales and are therefore not taxonomically diagnostic at the family level, although they may be useful in recognizing genera.  相似文献   

4.
Abstract An invasive, cold‐tolerant strain of the tropical green alga Caulerpa taxifolia was introduced recently in the Mediterranean Sea and along the Californian coast. We screened 50 aquarium and open‐sea C. taxifolia specimens for the presence/absence of an intron located in the rbcL gene of chloroplast DNA. We also reanalysed a total of 229 sequences of the Internal Transcribed Spacer (ITS) of ribosomal DNA, combining previously published sequences from different studies with 68 new sequences to complement rbcL data. The introduced Mediterranean strain was found to be characterized by the absence of the rbcL intron and by the occurrence of a particular monomorphic ITS type. A PCR assay based on rbcL gene was developed to detect new introductions of the invasive strain of C. taxifolia. This rapid and inexpensive test could be useful to assist environment managers in the preservation of coastal marine ecosystems.  相似文献   

5.
Begonia is a mega‐diverse genus comprising c. 1500 species of herbs, shrubs and epiphytes with a near pantropical distribution. Previous date estimates for the most recent common ancestor of Begonia have placed the evolution of this genus into a broad temporal context, but the issue of an absolute date estimate remains open. In this study, we attempt to estimate absolute DNA divergence dates for Begonia and, in doing so, address some of many the factors that can affect such estimates. The largest source of variance in our estimates was because of uncertainty with the calibration constraints and phylogenetic distance between these constraints and Begonia. Another large source of variance was due to the alternative methods of analysis investigated. Less variance was as a result of the alternative DNA datasets and combinations of calibration constraints assessed. Our date estimates suggest that the most recent common ancestor of Begonia could have diversified from the end of the Cretaceous to the beginning of the Neogene, probably during a period of global cooling from the mid Eocene to early Oligocene. These estimates imply that the near pantropical distribution of extant Begonia was generated by intercontinental dispersal after the ancient inferred break up of the supercontinent, Gondwana. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 363–380.  相似文献   

6.
Morphological and molecular evidence is provided to further document the status of the enigmatic taxon known as Caulerpa floridana W.R. Taylor from White Shoal, Dry Tortugas, Florida. DNA sequencing of three historical herbarium specimens (WRT329, WRT345 and WRT349) housed at the University of Michigan Herbarium (MICH) demonstrated the molecular separation of this species based on the reconstruction of 931 nucleotides of the chloroplast gene tufA. Caulerpa floridana is sister to the western Atlantic endemic C. ashmeadii Harvey and an unknown Caulerpa taxon from the Florida Middle Grounds. Caulerpa floridana most reliably differs from C. ashmeadii by the presence of a sharp, unequivocal apiculus at the tip of each pinnule. A morphological review of southwestern Atlantic records of C. floridana from Brazil excludes these reports as representative of the species.  相似文献   

7.
A critical reassessment of the morphological features of two closely related red algal genera,Grateloupia C.Agardh and Sinotubimorpha W.X.Li & Z.F.Ding (Halymeniaceae),pointed out that members of the t...  相似文献   

8.
Species diversity of Ulva in Vietnam was investigated using three commonly used genetic markers, the nuclear encoded rDNA ITS region and the plastid encoded rbcL and tufA genes. Single locus species delimitation methods, complemented with morphological and ecological information resulted in the delimitation of 19 species. This diversity is largely incongruent with the traditional understanding of Ulva diversity in Vietnam. Only four species identified in this study, U. lactuca, U. reticulata, U. spinulosa, and U. flexuosa, have been previously reported, and seven species, U. ohnoi, U. tepida, U. chaugulii, U. kraftiorum, U. meridionalis, U. limnetica, and U. aragoënsis, are recorded for the first time from Vietnam. Seven genetic clusters could not be associated with species names with certainty. A new species, U. vietnamensis, is described from marine to brackish coastal areas from southern Vietnam based on its morphological and molecular distinctiveness from the currently known Ulva species. A comparison with recent molecular-based studies of Ulva diversity showed that species composition in Vietnam is similar to that of adjacent countries, including Japan, China, as well as Australia. Our study emphasizes the importance of molecular data in the assessment of Ulva diversity, and indicates that a lot of diversity may still remain to be discovered, especially in tropical regions.  相似文献   

9.
Morphological data has provided a basis for the hypothesis that three taxa belonging to the Caulerpa racemosa complex occur in the Mediterranean Sea: var. turbinata–uvifera, var. lamourouxi, and the `invasive variety'. In order to test this hypothesis and to determine the origin of the `invasive variety', the transcribed spacer ITS1–ITS2 and an 18S ribosomal DNA (rDNA) intron were analysed from 16 isolates of Caulerpa racemosa. The `invasive variety' shows intraindividual polymorphism for both types of sequences. The ITS1–ITS2 data confirm that the three morphological varieties of C. racemosa from the Mediterranean Sea are distinct taxonomic units. The 18S intron data suggest that the new `invasive variety' could be a recent hybrid between var. turbinata–uvifera and an unknown tropical strain. Incongruence between the phylogenetic tree computed from ITS1–ITS2 regions and the 18S intron indicates that homogenization processes of concerted evolution have run at different rates.  相似文献   

10.
A critical reassessment of the morphological features of two closely related red algal genera, Grateloupia C. Agardh and Prionitis J. Agardh (Halymeniaceae), shows that members of the two genera share very similar reproductive (including the Grateloupia‐type auxiliary‐cell ampullae) and vegetative characters. Diagnostic features hitherto used for distinguishing these two genera, the texture of blades (lubricous to leathery in Grateloupia vs cartilaginous in Prionitis) and the position of reproductive structures (scattered over the entire blade in Grateloupia vs confined to particular portions of the blade in Prionitis), are continuous across some 75 species of both genera, thus making it difficult to draw a clear‐cut distinction between the two genera. In ribulose‐1,5‐bisphosphate carboxylase/oxygenase gene (rbcL) sequence analyses, the species of Grateloupia and Prionitis, including the two generitypes, constitute a large monophyletic clade in the Halymeniaceae. It is therefore proposed that Prionitis be included in the synonymy under Grateloupia and the appropriate combinations are proposed.  相似文献   

11.
The biogeographical history of major groups of bees with worldwide distributions have often been explained through hypotheses based on Gondwanan vicariance or long distance dispersal events, but until recently these hypotheses have been very difficult, if not impossible, to distinguish. New fossil data, comprehensive information on Mesozoic and Cenozoic coastline positions and the availability of phylogenetically informative DNA markers now makes it feasible to test these hypotheses for some groups of bees. This paper presents historical biogeographical analyses of the genus Xylocopa Latreille, based on phylogenetic analyses of species belonging to 22 subgenera using molecular data from two nuclear genes, elongation factor‐1α (EF‐1α) and phosphoenolpyruvate carboxykinase (PEPCK), combined with previously published morphological and mitochondrial data sets. Phylogenetic analyses based on parsimony and likelihood approaches resulted in several groups of subgenera supported by high bootstrap values (>85%): an American group with the Oriental/Palaearctic subgenera Nyctomelitta and Proxylocopa as sister taxa; a geographically diverse group (Xylocopa s.l); and a group consisting of African and Oriental subgenera. The relationships among these three clades and the subgenus Perixylocopa remained unresolved. The Oriental subgenus Biluna was found to be the sister group of all other carpenter bee subgenera included in this study. Using a relaxed molecular clock calibrated using fossil carpenter bees, we show that the major splits in the carpenter bee phylogeny occurred well after the final breakup of Gondwanaland (the separation of South America and Africa, 100 Mya), but before important Miocene fusion events. Ancestral area analysis showed that the genus Xylocopa most likely had an Oriental‐Palaearctic origin and that the present world distribution of Xylocopa subgenera resulted mainly from independent dispersal events. The influence of Pleistocene glaciations on carpenter bee distributions is also discussed. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 249–266.  相似文献   

12.
Aim We infer the biogeography and colonization history of a dispersal‐limited terrestrial vertebrate, the Japanese four‐lined ratsnake (Elaphe quadrivirgata), to reveal the number of times mainland populations have invaded the Izu Archipelago of Japan, the mainland sources of these colonists, and the time‐scale of colonization. We compare these results with those of past studies in an attempt to uncover general biogeographical patterns. Moreover, we briefly examine the significance of colonization history when evaluating the evolution of body size and melanism of the Izu Island E. quadrivirgata populations. Location The Izu Islands (Oshima, Toshima, Niijima, Shikine, Kozu, Tadanae and Mikura), a volcanic archipelago off the Pacific coast of central Japan. Methods We obtained DNA sequences of the mitochondrial cytochrome b gene (1117 base pairs) from 373 individual snakes sampled from seven of the Izu Islands and 25 mainland localities. We employed partitioned Bayesian phylogenetic analyses assuming a relaxed molecular clock to estimate phylogenetic relationships among extant haplotypes and to give an explicit temporal scale to the timing of clade divergence, colonization history and tempo of body‐size evolution. Moreover, we employed model‐based biogeographical analysis to calculate the minimum number of times E. quadrivirgata colonized the Izu Islands. Results We found evidence that three separate regions of the Izu Archipelago have been colonized independently from mainland ancestors within the past 0.58–0.20 Ma. The Izu Peninsula plus Oshima and Mikura were both colonized independently from lineages inhabiting eastern mainland Japan. The Toshima, Niijima, Shikine, Kozu and Tadanae populations all derive from a single colonization from western mainland Japan. Oshima has been subject to three or possibly four colonizations. Main conclusions These results support the hypothesis that the extreme body‐size disparity among island populations of this ratsnake evolved in situ. Moreover, the fact that the dwarf, melanistic population inhabiting Oshima descends from multiple mainland colonization events is evidence of an extremely strong natural selection pressure resulting in the rapid evolution of this unique morphology. These results contrast with theoretical predictions that natural selection pressures should play a decreased role on islands close to the mainland and/or subject to frequent or recent immigration.  相似文献   

13.
The brown algal family Ishigeaceae currently includes a single genus, Ishige Yendo, with two species. The relationship of the family to other brown algal lineages is less studied in terms of their plastid ultrastructure and molecular phylogeny. We determined the sequences of rbcL from four samples of the two Ishige species and nine putative relatives and the psaA and psbA sequences from 37 representatives of the brown algae. Analyses of individual and combined data sets resulted in similar trees; however, the concatenated data gave greater resolution and clade support than each individual gene. In all the phylogenies, the Phaeophyceae was well resolved, the Ectocarpales being placed in a terminal position and the Ishigeaceae ending up in a basal position. From our ultrastructural study, we concluded that the pyrenoid is absent in the Ishigeaceae, despite the presence of a rudimentary pyrenoid in I. okamurae. These results suggest that the Ishigeaceae is an early diverging brown lineage. Our molecular and morphological data, therefore, lead us to exclude the Ishigeaceae from the Ectocarpales s.l., which have an elaborate pyrenoid, and to propose its own order Ishigeales ord. nov. The Ishigeales is distinguished by oligostichous structure of thalli, phaeophycean hairs formed within cryptostomata, unilocular sporangia transformed from terminal cortical cells, and plurilocular sporangia lacking sterile terminal cells. This study is the first to document the utility of the psaA and psbA sequences for brown algae and also the first report on the multigene phylogeny of the Phaeophyceae based on three protein‐coding plastid genes.  相似文献   

14.
The molecular phylogeny of brown algae was examined using concatenated DNA sequences of seven chloroplast and mitochondrial genes (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1). The study was carried out mostly from unialgal cultures; we included Phaeostrophion irregulare and Platysiphon glacialis because their ordinal taxonomic positions were unclear. Overall, the molecular phylogeny agreed with previously published studies, however, Platysiphon clustered with Halosiphon and Stschapovia and was paraphyletic with the Tilopteridales. Platysiphon resembled Stschapovia in showing remarkable morphological changes between young and mature thalli. Platysiphon, Halosiphon and Stschapovia also shared parenchymatous, terete, erect thalli with assimilatory filaments in whorls or on the distal end. Based on these results, we proposed a new order Stschapoviales and a new family Platysiphonaceae. We proposed to include Phaeostrophion in the Sphacelariales, and we emended the order to include this foliose member. Finally, using basal taxa not included in earlier studies, the origin and divergence times for brown algae were re‐investigated. Results showed that the Phaeophyceae branched from Schizocladiophyceae ~260 Ma during the Permian Period. The early diverging brown algae had isomorphic life histories, whereas the derived taxa with heteromorphic life histories evolved 155–110 Ma when they branched from the basal taxa. Based on these results, we propose that the development of heteromorphic life histories and their success in the temperate and cold‐water regions was induced by the development of the remarkable seasonality caused by the breakup of Pangaea. Most brown algal orders had diverged by roughly 60 Ma, around the last mass extinction event during the Cretaceous Period, and therefore a drastic climate change might have triggered the divergence of brown algae.  相似文献   

15.
Cryptonemia specimens collected in Bermuda over the past two decades were analysed using gene sequences encoding the large subunit of the nuclear ribosomal DNA and the large subunit of RuBisCO as genetic markers to elucidate their phylogenetic positions. They were additionally subjected to morphological assessment and compared with historical collections from the islands. Six species are presently found in the flora including C. bermudensis comb. nov., based on Halymenia bermudensis, and the following five new species: C. abyssalis, C. antricola, C. atrocostalis, C. lacunicola and C. perparva. Of the eight species known in the western Atlantic flora prior to this study, none is found in Bermuda. Specimens reported in the islands in the 1900s attributed to C. crenulata and C. luxurians are representative of the new species, C. antricola and C. atrocostalis, respectively.  相似文献   

16.
Our morphological and molecular studies indicate that species from the southern hemisphere previously placed in Delesseria belong in Paraglossum and that Paraglossum and Apoglossum comprise a separate tribe, the Apoglosseae, S.-W. Lin, Fredericq & Hommersand, trib. nov., within the family Delesseriaceae. From a vegetative perspective the Apoglosseae is readily recognized because some or all fourth-order cell rows are formed on the inner sides of third-order cell rows. All fourth-order cell rows grow adaxially in Apoglossum, whereas both adaxial and abaxial cell rows are present in Paraglossum. Periaxial cells do not divide in Apoglossum, whereas they divide transversely in Paraglossum in the same way as in Delesseria. Major branches are formed mainly from the margins of midribs in the Apoglosseae. The procarp consists of a straight carpogonial branch and two sterile cells, with the second formed on the same side as the first. The carpogonium cuts off two connecting cells in tandem from its apical end, the terminal cell being nonfunctional and the subterminal cell typically fusing with the auxiliary cell. Gonimoblast filaments radiate in all directions from the gonimoblast initials and produce carposporangia terminally in branched chains, with pit connections between the inner gonimoblast cells broadening and enlarging. The auxiliary cell, supporting cell, and sterile cells unite into a fusion cell, which remains small in Apoglossum but incorporates the branched inner gonimoblast filaments and cells in the floor of the cystocarp in Paraglossum. Elongated inner cortical cells seen in mature cystocarps in the Delesserieae are absent in the Apoglosseae. Phylogenetic studies based on rbcL (RuBisCO large subunit gene) sequence analyses strongly support the recognition of the Apoglosseae within the subfamily Delesserioideae of the Delesseriaceae, in agreement with our previous observations based primarily on analyses of large subunit ribosomal DNA (LSU).  相似文献   

17.
 Representatives of nearly all genera of the taxon-rich stem-succulent stapeliads and most of the few related, leafy genera were analyzed. Sequence data from two non-coding molecular markers (ITS region of nrDNA and trnT-L and trnL-F spacers as well as the trnL intron of cpDNA) support the traditional tribal affiliation of the genera, which form a monophyletic group. This monophylum breaks into a basal Neoschumannia/Anisotoma/Riocreuxia/Sisyranthus nk;clade, from which the core Ceropegieae are derived. The four Ceropegia species included are not monophyletic, and their relationship to Brachystelma changes depending on the marker studied. The stem succulent taxa fall in a number of well supported, but unresolved clades, the most prominent being the predominantly southern African clade comprising Orbea, Stapelia and some other genera. The most derived taxa of NE Africa, Duvaliandra and White-sloanea, are basal to this southern African clade. The other clades comprise the more basal genera of stem-succulent stapeliads, including the members of the Caralluma complex. Of the 17 genera accepted by Plowes for the Caralluma complex, seven are recognized: Caralluma, Apteranthes, Australluma, Boucerosia, Caudanthera, Desmidorchis and Monolluma. New combinations are proposed in 15 cases; Caralluma adscendens var. geniculata is raised to specific rank. Anomalluma is reinstated, and Pseudolithos mccoyi is transfered to it. A broadened concept for Orbea (incl. Angolluma and Orbeopsis) is recognized, but Orbeanthus is kept separate. The monotypic Ballyanthus, recently separated from Orbea, is nested within Duvalia. Piaranthus (incl. Huerniopsis) is monophyletic. The bitypic Notechidnopsis is reduced to the type species, N. tessellata, while N. columnaris is transferred to a new genus, Richtersveldia. Received February 25, 2002; accepted June 17, 2002 Published online: November 7, 2002 Address of the authors: Dr. Ulrich Meve (e-mail: ulrich.meve@uni-bayreuth.de) and Prof. Dr. Sigrid Liede (e-mail: sigrid.liede@uni-bayreuth.de), Universit?t Bayreuth, Lehrstuhl für Pflanzensystematik, Universit?tsstrasse 30, D-95440 Bayreuth, Germany.  相似文献   

18.
The present paper documents the morphology and systematic positions of three new oligotrich ciliates, P arallelostrombidium obesum sp. nov. , P arallelostrombidium ellipticum sp. nov. , and S trombidium tropicum sp. nov. , which were sampled from habitats with different salinities in southern China. P arallelostrombidium obesum sp. nov. is characterized by a fat body and the posterior portions of the girdle and ventral kineties extending transversely on the dorsal side. P arallelostrombidium ellipticum sp. nov. is recognizable by the anterior ends of the girdle and ventral kineties being close to each other and the posterior ends of the girdle and ventral kineties intersecting on the dorsal side. S trombidium tropicum sp. nov. is distinguished by a ventrally opened girdle kinety that is slightly spiralled with the right end shifted posteriad. Small subunit rRNA gene trees show that P . obesum sp. nov. and P . ellipticum sp. nov. fall into a mixed group composed of Parallelostrombidium and some Novistrombidium species, and that S . tropicum sp. nov. branches at the base of the clade containing non‐Strombidium species. The relationships of Parallelostrombidium species and that of Strombidium species are both not resolved considering their low support values in our phylogenetic analysis. © 2015 The Linnean Society of London  相似文献   

19.
20.
A molecular approach was used to study the phylogeny of 12 genera of Prasinophyceae and two genera of Pedinophyceae (Chlorophyta). The study was based on maximum likelihood and LogDet transformation analyses of a 1094-basepair fragment of the large subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase (rbcL), a chloroplast-encoded gene. With the inclusion of homologous sequences from two cyanobacteria (Anabaena PCC 7120 and Anacystis nidulans (Richter) Drout et Daily) and a prochlorophyte(Prochlorothrix hollandica Burger-Wiersma, Stal et Mur), the maximum likelihood reconstructions suggested that species referred to the family Mamiellaceae are secondarily reduced forms rather than the most ancestral eukaryotic green plants. The systematic position of Micromonas pusilla (Butcher) Manton et Parke based on morphology is ambiguous, but the rbcL-based inferences indicated that it is related to the Mamiellaceae. In spite of being morphologically very different, Pycnococcus and Pseudoscourfieldia appear to be closely related, and it is suggested that Pseudoscourfieldia be included in the family Pycnococcaceae. The phylogenetic framework when based on first and second codon positions identifies the Mamiellaceae, Pycnococcaceae, Halosphaer-aceae, and Mesostigmataceae as monophyletic families, whereas the Chlorodendraceae appears to be of polyphyletic origin. However, this branching pattern was not confirmed by bootstrap analyses. The analysts based on a LogDet transformation matrix also supported the close relationship among species belonging to the Mamiellaceae (including Micromonas pusiila) and that the pedinophytes form a separate group. The branching pattern among most of the prasinophyte genera was not resolved giving a tree topology similar to those obtained in the bootstrap analyses. A relative rate test showed that the rbcL gene in the Pedinophyceae has evolved at a slower speed relative to that in the Prasinophyceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号