首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.  相似文献   

3.
To understand the suppression mechanisms against disease resistance in rice, we took advantage of the fact that suspension cultured cells exhibit many of the defence responses that are characteristic of intact tissues. In this study we constitutively measured the Rhizoctonia solani and Sarocladium oryzae toxins, induced and suppressed levels of phenylalanine ammonia lyase, peroxidase, superoxide dismutase, phenols, catalase, β-1,3-glucanase and chitinase in rice suspension cultured cells. The addition of Rhizoctonia solani and Sarocladium oryzae toxins separately in suspension cultured cells shows the suppression of defence enzymes and compounds at 24 h and 48 h respectively except SOD. The rice cultivar IR50 delays the disease suppression effect when compared to the other cultivars viz., Pusa Basmati and Co 43. The PR proteins (namely β-1,3-glucanase and chitinase) activities in rice suspension cultured cells were reduced during 48 h and 72 h after the addition of Rhizoctonia solani toxin, whereas the activities were suppressed only after 72 h when inoculated with Sarocladium oryzae toxin. Selective suppression of these defence enzymes and compounds by Rhizoctonia solani and Sarocladium oryzae toxin shows that toxins play a major role during pathogenesis in rice cells.  相似文献   

4.
Because pathogens use diverse infection strategies, plants cannot use one-size-fits-all defence and modulate defence responses based on the nature of pathogens and pathogenicity mechanism. Here, we report that a rice glycoside hydrolase (GH) plays contrasting roles in defence depending on whether a pathogen is hemibiotrophic or necrotrophic. The Arabidopsis thaliana MORE1 (M agnaporthe o ryzae re sistance 1) gene, encoding a member of the GH10 family, is needed for resistance against Moryzae and Alternaria brassicicola, a fungal pathogen infecting A. thaliana as a necrotroph. Among 13 rice genes homologous to MORE1, 11 genes were induced during the biotrophic or necrotrophic stage of infection by M. oryzae. CRISPR/Cas9-assisted disruption of one of them (OsMORE1a) enhanced resistance against hemibiotrophic pathogens Moryzae and Xanthomonas oryzae pv. oryzae but increased susceptibility to Cochliobolus miyabeanus, a necrotrophic fungus, suggesting that OsMORE1a acts as a double-edged sword depending on the mode of infection (hemibiotrophic vs. necrotrophic). We characterized molecular and cellular changes caused by the loss of MORE1 and OsMORE1a to understand how these genes participate in modulating defence responses. Although the underlying mechanism of action remains unknown, both genes appear to affect the expression of many defence-related genes. Expression patterns of the GH10 family genes in A. thaliana and rice suggest that other members also participate in pathogen defence.  相似文献   

5.
6.
7.
8.
9.
Magnaporthe oryzae causes rice blast disease, which seriously threatens the safety of food production. Understanding the mechanism of appressorium formation, which is one of the key steps for successful infection by Moryzae, is helpful to formulate effective control strategies of rice blast. In this study, we identified MoWhi2, the homolog of Saccharomyces cerevisiae Whi2 (Whisky2), as an important regulator that controls appressorium formation in M. oryzae. When MoWHI2 was disrupted, multiple appressoria were formed by one conidium and pathogenicity was significantly reduced. A putative phosphatase, MoPsr1, was identified to interact with MoWhi2 using a yeast two-hybridization screening assay. The knockout mutant ΔMopsr1 displayed similar phenotypes to the ΔMowhi2 strain. Both the ΔMowhi2 and ΔMopsr1 mutants could form appressoria on a hydrophilic surface with cAMP levels increasing in comparison with the wild type (WT). The conidia of ΔMowhi2 and ΔMopsr1 formed a single appressorium per conidium, similar to WT, when the target of rapamycin (TOR) inhibitor rapamycin was present. In addition, compared with WT, the expression levels of MoTOR and the MoTor signalling activation marker gene MoRS3 were increased, suggesting that inappropriate activation of the MoTor signalling pathway is one of the important reasons for the defects in appressorium formation in the ΔMowhi2 and ΔMopsr1 strains. Our results provide insights into MoWhi2 and MoPsr1-mediated appressorium development and pathogenicity by regulating cAMP levels and the activation of MoTor signalling in M. oryzae.  相似文献   

10.
11.
Heme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF‐Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding β‐glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice. The transgenic lines of OsHAP2Ein::GUS with the intron showed high GUS activity in the wounds and surrounding tissues. When treated by salicylic acid (SA), isonicotinic acid (INA), abscisic acid (ABA) and hydrogen peroxide (H2O2), the lines showed GUS activity exclusively in vascular tissues and mesophyll cells. This activity was enhanced after inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. The OsHAP2E expression level was also induced after inoculation of rice with M. oryzae and X. oryzae pv. oryzae and after treatment with SA, INA, ABA and H2O2, respectively. We further produced transgenic rice overexpressing OsHAP2E. These lines conferred resistance to M. oryzae or X. oryzae pv. oryzae and to salinity and drought. Furthermore, they showed a higher photosynthetic rate and an increased number of tillers. Microarray analysis showed up‐regulation of defence‐related genes. These results suggest that this gene could contribute to conferring biotic and abiotic resistances and increasing photosynthesis and tiller numbers.  相似文献   

12.
13.
Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4–5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.  相似文献   

14.
15.
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss‐of‐function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild‐type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1‐overexpressing (GIF1‐OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild‐type plants. More importantly, higher levels of callose were deposited in GIF1‐OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1‐OE plants when compared with the wild‐type plants. We also found that defence‐related genes were constitutively activated in the GIF1‐OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.  相似文献   

16.
17.
18.
The rice XA21 receptor kinase confers robust resistance to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). A tyrosine‐sulfated peptide from Xoo, called RaxX, triggers XA21‐mediated immune responses, including the production of ethylene and reactive oxygen species and the induction of defence gene expression. It has not been tested previously whether these responses confer effective resistance to Xoo. Here, we describe a newly established post‐inoculation treatment assay that facilitates investigations into the effect of the sulfated RaxX peptide in planta. In this assay, rice plants were inoculated with a virulent strain of Xoo and then treated with the RaxX peptide 2 days after inoculation. We found that post‐inoculation treatment of XA21 plants with the sulfated RaxX peptide suppresses the development of Xoo infection in XA21 rice plants. The treated plants display restricted lesion development and reduced bacterial growth. Our findings demonstrate that exogenous application of sulfated RaxX activates XA21‐mediated immunity in planta, and provides a potential strategy for the control of bacterial disease in the field.  相似文献   

19.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up‐regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)‐limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)‐limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)‐limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.  相似文献   

20.
The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain‐of‐function mutations in an ATP‐binding cassette transporter gene. An Lr34‐like fungal disease resistance with a similar broad‐spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34‐expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence‐based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad‐spectrum disease resistance against the most devastating fungal disease of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号